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Our article

The basis for a presentation of Complexity Theory based
on discrete Ordinary Differential Equations

#jekiffelesmachinesdeTuring

#jekiffeleséquationsdifférentielles

Important demonstrations:

I The particular role played by linear (affine) ordinary
differential equations in complexity theory, and algorithm
design,

I The concept of derivation along some particular function
(i.e. change of variable) to guarantee a low complexity.
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Discrete derivative

Definition
Let f : N→ Z, the discrete derivative (a.k.a finite difference) is
defined as:

∆f(x) = f(x + 1)− f(x).

When f : Np → Zq, denote:

∂f(x , y)

∂x
= f(x + 1, y)− f(x , y).

Sometimes use f ′(x) instead of ∆(f(x))
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Discrete integral

Definition (Discrete Integral)

we write
∫ b
a f(x)δx as a synonym for∫ b

a
f(x)δx =

x=b−1∑
x=a

f(x)

with the conventions:
∫ a
a f(x)δx = 0 and

∫ b
a f(x)δx = −

∫ a
b f(x)δx

when a > b.

It follows easily by the telescope formula that:

Theorem (Fundamental Theorem of Finite Calculus)

Let F(x) be some function. Then,∫ b

a
F′(x)δx = F(b)− F(a).
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Several results from classical derivatives generalize to this
settings:

I (a · f (x) + b · g(x))′ = a · f ′(x) + b · g ′(x)
I (f (x) · g(x))′ = f ′(x) · g(x + 1) + f (x) · g ′(x) =

f (x + 1)g ′(x) + f ′(x)g(x)
I integration by parts . . .
I etc.

Many names/rediscovery of (sometimes rather surprising)
generalizations of classical (continuous) statements:

I also called: umbral calculus, discrete calculus, discrete
fractional calculus, calculus of finite differences, difference
equations, finite operator calculus, etc...

We do not want to talk about combinatoris/computer
algebra/math but program with ODEs!
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Discrete Ordinary Differential Equation (ODE)

Discrete ODE: System of equations of the form, where h is some
function:

∂f(x , y)

∂x
= h(f(x , y), x , y), (1)

When some initial value f(0, y) = g(y) is added, this is called an
Initial Value Problem (IVP) or a Cauchy Problem.

An IVP can always be put in integral form

f(x , y) = f(0, y) +

∫ x

0
h(f(x , y), x , y)δx .

Hence, a discrete ODE always have a solution f : Np → Zq

Not always true if one wants f : Zp → Zq
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Useful functions

Falling power: xm = x · (x − 1) · (x − 2) · · · (x − (m − 1)).
Derivation rule: (xm)′ = m · xm−1

Falling exponential:

2
U(x)

= (1 + U′(x − 1)) · · · (1 + U′(1)) · (1 + U′(0))

=
t=x−1∏
t=0

(1 + U′(t)).

with the convention that
∏0

0 = id, where id is the identity
(e.g. 1 for the scalar case)
Derivation rule: (

2
U(x)

)′
= U′(x) · 2U(x)
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Linear system of discrete ODE

Linear ODE: system of the form{
f ′(x , y) = A(x , y) · f(x , y) + B(x , y)
f(0, y) = G(y) (initial conditions)

For matrices A and vectors B and G.

Well known and simple kind of system

Easy to solve in the continous setting
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Linear system of discrete ODE

Easy to see that solution is of the form:

f(x , y) =
(

2
∫ x

0 A(t,y)δt
)
· G(y) +

∫ x

0

(
2
∫ x
u+1 A(t,y)δt

)
· B(u, y)δu.

Or, alternatively:

f(x , y) =
x−1∑
u=−1

(
x−1∏

t=u+1

(1 + A(t, y))

)
· B(u, y)

with the conventions that
∏x−1

x κ(x) = 1 and B(−1, y) = G(y)

Computational content is clear: the solution can be computed
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Some examples

Always suppose from now that we can use and compose the
following functions:

arithmetic operations: +, −, ×;

`(x) returns the length of |x | written in binary;

sg(x) : Z→ Z (respectively: sgN(x) : N→ Z) that takes value
1 for x > 0 and 0 in the other case;

From these it comes:

s̄g(x) that stands for s̄g(x) = (1− sg(x))× (1− sg(−x)): it
tests if x = 0 for x ∈ Z;

Conditional statements
if(x < x ′, y , z) for if(sg(x ′ − x + 1), y , z)
if(x = x ′, y , z) for if(1− s̄g(x − x ′), y , z).
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Programming with discrete ODEs:
Example 1: min f : x 7→ min{f (y) : 0 ≤ y ≤ x}

Given by F (x , x) where F is solution of the discrete ODE

F (0, x) = f (0);
∂F (t,x)
∂t = H(F (t, x), f (x), t, x),

where H(F , f , t, x) = 0 if F < f , f − F if F ≥ f .

In integral form:

F (x , y) = F (0) +

∫ x

0
H(F (t, y), t, y)δt.

Basically: F (t + 1, x) = if(F (t, x) < f (x),F (t, x), f (x)).

Morality: An integral is an algorithm! and conversely!

Time complexity? x , not polynomial in the size `(x) of x .
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Programming with discrete ODEs:
Example 2: b

√
xc = max{y ≤ x : y · y ≤ x}

General method:

I Let f , h be some functions with h being non decreasing.

I Compute someh with someh(x) = y s.t. |f (x)− h(y)| is
minimal.

I When h(x) = x2 and f (x) = x , it holds that:
b
√
xc = if(someh(x)2 ≤ x , someh(x), someh(x)− 1).

The function someh can be computed (in non-polynomial
time) as a solution of an ODE as previously.

More efficient (polynomial time) way: perform a change of
variable so that the search becomes logarithmic in x!
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Compute someh(x) = y s.t. |f (x)− h(y)| is minimal
h being non decreasing.

Write:
someh(x) = G (`(x), x)

for some function G (t, x) solution of

G (0, x) = x ;
∂G(t,x)
∂t = E (G (t, x), t, x)

where

E (G , t, x) =


2`(x)−t−1 whenever h(G ) > f (x),
0 whenever h(G ) = f (x)

−2`(x)−t−1 whenever h(G ) < f (x).
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Other examples:

I In the article: Computing Suffix using ODEs , . . . ,
I . . .

Which functions can be programmed with discrete
ODEs?
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Primitive recursive functions

Let p ∈ N, g : Np → N and h : Np+2 → N.

The function f = REC(g , h) : Np+1 → N is defined by primitive
recursion from g and h if:{

f (0, y) = g(y)
f (x + 1, y) = h(f (x , y), x , y)
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Primitive recursive functions

A function over the integers is primitive recursive, denoted PR, if
and only if it belongs to the smallest set of functions that contains

constant function 0,

the projection functions πpi ,

the functions successor s,

and that is closed under composition and primitive recursion.
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Bounded recursion

Let g : Np → N, h : Np+2 → N and i : Np+1 → N.

The function f = BR(g , h) : Np+1 → N is defined by bounded
recursion from g , h and i if

f (0, y) = g(y)

f (x + 1, y) = h(f (x , y), x , y)

under the condition that:

f (x , y) ≤ i(x , y).
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Elementary functions and Grzegorczyk’s hierarchy

Bounded recursion makes sense when initial functions are
restricted

Consider the family of functions En defined by induction as
follows. When f is a function, f [d] denotes its d-th iterate.

E0(x) = s(x) = x + 1,

E1(x , y) = x + y ,

E2(x , y) = (x + 1) · (y + 1),

E3(x) = 2x ,

En+1(x) = E
[x]
n (1) for n ≥ 3.
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Elementary functions and Grzegorczyk’s hierarchy

Class E0 : contains the constant function 0, the projection
functions πpi , the successor function s, and is closed under
composition and bounded recursion.

Class En for n ≥ 1 : defined similarly except that functions
max and En are added to the list of initial functions.

En∗ : associated relational class

Known results:

E3 : class of elementary functions (alternative definition by
bounded sum and product)

E2
∗ = Linspace, E2 = FLinspace (linear space and polynomial

growth)

En ( En+1 for n ≥ 3

PR =
⋃

i E i
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Algebras of functions

Summary

Charaterize complexity classes by algebras of functions

How?

I Take some basis functions
I Allow classical operations such as composition
I Use a recursion mechanism

Full recursion is too much (primitive recursion). Need to
restrict it.

Applications/goals: programming languages with performance
guarantees
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Recursion on notation (Cobham)

Consider s0, s1 : N→ N

s0(x) = 2 · x and s1(x) = 2 · x + 1.

Definition
Function f defined by bounded recursion on notations, i.e. BRN,
from functions g , h0, h1 et k when:

f (0, y) = g(y)
f (s0(x), y) = h0(x , y, f (x , y)) for x 6= 0
f (s1(x), y) = h1(x , y, f (x , y))
f (x , y) ≤ k(x , y)
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Cobham’s approach

FP smallest subset of primitive recursive functions

Containing basis functions :
Function0, projections pki , successor functions s0(x) = 2 · x
and s1(x) = 2 · x + 1, ”smash” function x]y = 2|x |×|y |

Closed by composition

Closed by bounded recursion on notations

Cobham (62) : FP is equal to FP, the class of polynomial time
computable functions
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Why it works

Definition of useful functions (addition, concatenation,
conditionals, etc) ”easy”

x]y = 2|x |×|y |, Hence |x]y | = |x |+ |y |+ 1.

Help to obtain ”counters” of polynomial size.
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Why it works


f (0, y) = g(y)
f (s0(x), y) = h0(x , y, f (x , y)) for x 6= 0
f (s1(x), y) = h1(x , y, f (x , y))
f (x , y) ≤ k(x , y)
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f is defined from h0, h1 and k.

If |k(x , y)| is polynomial in |x |+ |y |, then so is |f (x , y)|
Hence, inner terms do not grow too fast!
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Then the number of induction steps is in O(|x |).
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Going further: syntactic restriction, ramified recursion

Cobham’s work was the starting point of numerous attempts
to capture complexity classes by recursion algebras

Generalize to L,NCi ,ACi classes

Alternative approaches that do not require to bound the
function a priori.

I Predicative recursion (Bellantoni, Cook)
I Ramified recurrence (Leivant, Leivant-Marion)
I ....
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Discrete ODE for primitive recursive functions

Definition ((Scalar) Discrete ODE schemata)

Let g : Np → N and h : Z× Np+1 → Z.
Function f is defined by discrete ODE solving from g and h,
denoted by f = ODE(g , h), if f : Np+1 → Z if f solution of:{

∂f (x ,y)
∂x = h(f (x , y), x , y)

f (0, y) = g(y)

When h is linear : LI schemata.
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Discrete ODE for primitive recursive functions

What about the smallest classes of functions

that contains 0, the projections πpi , the successor s, addition
+, subtraction −
that is closed under composition and discrete ODE schemata
(respectively: scalar discrete ODE schemata) LI.

Result: Its restriction to functions with values in N is equal to the
set of primitive recursive functions.
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Discrete ODE for elementary functions

What about the smallest classes of functions

that contains 0, the projections πpi , the successor s, addition
+, subtraction −
that is closed under composition and discrete linear ODE
schemata (respectively: scalar discrete linear ODE schemata)
LI.

Result: Its restriction to functions with values in N is equal to E ,
the set of elementary functions.
Remark: recall the definition of bounded sum and bounded
product.
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Bounded sum and product

Let g : Np+1 → N,

Let f = BSUM<(g) : Np+1 → N be defined as
f : (x , y) 7→

∑
z<x g(z , y) for x 6= 0, and 0 for x = 0.

Function f is the unique solution of initial value problem :{
∂f (x ,y)
∂x = g(x , y)

f (0, y) = 0

Let f = BPROD<(g) be defined as f : (x , y) 7→
∏

z<x g(z , y)
for x 6= 0, and 1 for x = 0.
Function f is the unique solution of initial value problem{

∂f (x ,y)
∂x = f (x , y) · (g(x , y)− 1)

f (0, y) = 1
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ODE for complexity classes ?

Elementary functions are of high complexity

But linear systems are the simplest kid of system

What can we do (i.e. what can we restrict more) to capture
smaller complexity classes and in particular the class of
polynomial time computable functions FP?
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Derivation along a function

Definition (L-ODE)

Let L : Np+1 → Z. We write

∂f(x , y)

∂L
=

∂f(x , y)

∂L(x , y)
= h(f(x , y), x , y), (2)

as a formal synonym for
f(x + 1, y) = f(x , y) + (L(x + 1, y)− L(x , y)) · h(f(x , y), x , y).

Inspired by the classical formula:

δf (x , y)

δx
=
δL(x , y)

δx
· δf (x , y)

δL(x , y)
.
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L-ODE

The equality

δf (x , y)

δx
= (L(x + 1, y)− L(x , y)) · h(f(x , y), x , y)

implies that the value of the derivative i.e. the variation of the
function has to be considered only when

L(x + 1, y)− L(x , y) 6= 0

Consequence: only as many values to consider to compute f (x , y)
as the number of times L(t, y) changes between t = 0 and t = x ...

Application: if L(x , y) = `(x) then only a logarithmic in x
number of values
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Key observation:
Relating to a change of variable.

Key observation. Assume that (2) holds.
Then f(x , y) is given by

f(x , y) = F(L(x , y), y)

where F is the solution of initial value problem

F(0, y) = f(L(0, x), y);
∂F(t,y)
∂t = ∆L(t, y) · h(F(t, y), t, y).

where k ∈ N, f : Np+1 → Zd , L : Np+1 → Z are some functions.
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Fundamental observation: Linear ODEs

Fundamental observation: Consider the ODE

f ′(x , y) = A(f(x , y), x , y) · f(x , y) + B(f(x , y), x , y). (3)

Assume:

1. The initial condition G(y) =def f(0, y), as well as Matrix A and
vector B are polynomial time computable.

2. `(‖A(f , x , y)‖) ≤ `(‖f‖) + pA(x , `(y)) for some polynomial pA
3. `(‖B(f , x , y)‖) ≤ `(‖f‖) + pB(x , `(y)) for some polynomial pB

Then1 its solution f(x , y) is polynomial time computable in
x and the length of y.

1‖ · · · ‖ stands for the sup norm.
38



Towards capturing FP

It is easily seen that the solution of

∂f (x)

∂`(x)
= f (x) · (f (x)− 1) (4)

is a fast growing function (output is exponential in size)

Idea: combine linearity and derivation along some particular
function L i.e. systems :

∂f(x , y)

∂L
= h(f(x , y), x , y), (5)

where

I h is ”linear”
I L has a polylogarithmic number of jumps. For example,
L(x) = `(x).
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A extended notion of linearity

P(x1, ..., xh): expression built-on

+,−,× and sg()

over variables V = {x1, ..., xh} and integer constants.

The degree deg(x ,P) of a term x ∈ V in P is defined inductively:

deg(x , x) = 1 and for x ′ ∈ X ∪ Z such that x ′ 6= x ,
deg(x , x ′) = 0

deg(x ,P + Q) = max{deg(x ,P), deg(x ,Q)}
deg(x ,P × Q) = deg(x ,P) + deg(x ,Q)

deg(x , sg(P)) = 0
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A extended notion of linearity

An expression P is essentially constant in x if deg(x ,P) = 0.

It is essentially linear in x if it is of the form A · x + B where
A,B are essentially constant in x .

Example

The expression P(x , y , z) = x · sg((x2− z) · y) + y3 is linear in
x , essentially constant in z and not linear in y .

The expression P(x , 2`(y), z) = sg(x2 − z) · z2 + 2`(y) is
essentially constant in x , essentially linear in 2`(y) (but not
essentially constant) and not essentially linear in z .
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Linear L-ODE

Definition
Function f is linear L-ODE definable from u, g and h if it
corresponds to the solution of the L-IVP

∂f(x , y)

∂L
= u(f(x , y),h(x , y), x , y) and f(0, y) = g(y)

where u is essentially linear in f(x , y).
When L(x , y) = `(x), such a system is called linear length-ODE.
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DL

Definition (DL)

Let DL be the smallest subset of functions,

that contains 0, 1, projections πpi , the length `(x), functions
x+y , x−y , x × y , the sign function sg(x)

closed under composition (when defined) and linear
length-ODE scheme.
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A characterization of FP

Theorem: DL = FP

Proof of (⊆): Roughly speaking

The derivation along `(x) (or any L with polylog ”jumps”)
permits to control the number of steps

Linearity of the system permits to control the size of the
output

Proof of (⊇): By a direct expression of a polynomial
computation of a register machine.
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Some Other Results in the Article
Normal form theorem::

I A function f : Np → Z is in FP iff

f (y) = g(`(y)c , y)

for some integer c and some g : Np+1 → Zk solution of a
normal linear length-ODE.

details

A characterization of FNP:

I Take above g : Np+1 → Nk , solution of a normal linear
length-ODE with parameter

∂g(x , y)

∂`(x)
= u(g(x , y),w(x , y), x , y)

for some bounded w : Np+1 → N.

details

Skip
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Conclusion

The basis for a presentation of Complexity Theory based
on discrete Ordinary Differential Equations

Important demonstrations:

I The particular role played by linear (affine) ordinary
differential equations in complexity theory, and algorithm
design,

I the concept of derivation along some particular function
(i.e. change of variable) to guarantee a low complexity.
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Further works
Characterizations of Other complexity classes?

I P[0,1] of functions computable in polynomial time over the
reals in the sense of computable analysis.

I FPSPACE.

I other classes?

Revisiting classical algorithmic under this viewpoint:

I Ex: The Master Theorem can be basically read as a result on
(the growth of) a particular class of discrete time length
ODEs.

I Several recursive algorithms can then be reexpressed as
particular discrete ODEs of specific type.

Relations to analog computability, computability with
continous ODEs.
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Programming with discrete ODEs:
Example 3: suffix(x , y)

suffix(x , y) outputs the `(y) = t least significant bits of the
binary decomposition of x .

suffix(x , y) = F (`(x), x) where

F (0, y) = x ;
∂F (T ,y)
∂T = if(`(F (t, x)) = 1, 0,−2`(F (t,x))−1).

Basically: we are using a fix-point definition of the function:
suffix(x , y) = F (`(x), y) where F (0, x) = x ;
F (t + 1, x) = if(`(F (t, x)) = 1,F (t, x),F (t, x)− 2`(F (t,x))−1).

back
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