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e If we want to talk about surreal numbers, the very first thing to
e Construction of numbers : @ — N — Q — R wonder what is a number. In classical set theory we start from the
‘ ‘ ' emptyset and build numbers, then rationnal numbers and finally with
lds. e R is the unique Archimedean and complete field. Cauchy-completion or Dedekind-completion.

e R is the unique field that is both Archimedean and complete. This
properties and fundamental to prove fundamental theorems of analy-
sis (TVE, TVI, Rolle, Mean Value Theorem, Fixed Point Theorems).
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e Construction of numbers : @ - N —-Q - R
e R is the unique Archimedean and complete field.
e What about replace N by a set of ordinal number?

Normal form : > n;w®
i<a
Get surreal numbers.
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L Introduction : Numbers

L Numbers

e If we want to talk about surreal numbers, the very first thing to
wonder what is a number. In classical set theory we start from the
emptyset and build numbers, then rationnal numbers and finally with
Cauchy-completion or Dedekind-completion.

e R is the unique field that is both Archimedean and complete. This
properties and fundamental to prove fundamental theorems of analy-
sis (TVE, TVI, Rolle, Mean Value Theorem, Fixed Point Theorems).

e With ordinal number instead of natural numbers we may get other
things. We may get a lot of new numbers, that may look like the
normal form of ordinal theorems.
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numbers g L3 methods to think about surreal numbers
N
There are 3 main methods to define the surael numbers.
?::':?'wand . e The first is the vision of Conway. Conway was thinking them as cuts :
; e Cuts (and games) : 3 /a Conway g=[neN| {w—-n}

basically they are games that have strategies for Alice or Bob.
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There are 3 main methods to define the surael numbers.

"‘t . w e The first is the vision of Conway. Conway was thinking them as cuts :
e e Cuts (and games) : 3 la Conway > =[neN| {w- ”} basically they are games that have strategies for Alice or Bob.
o, e Sign expansion : a la Gonshor g = (+)“(—,

e Gonshor give another vision that is very connected with Conway'’s
view. It introduce the sign expansion. Length of this sequence corres-
pond to the birthday of the numbers in Conway'’s view.
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There are 3 main methods to define the surael numbers.

e The first is the vision of Conway. Conway was thinking them as cuts :
basically they are games that have strategies for Alice or Bob.

e Gonshor give another vision that is very connected with Conway'’s
view. It introduce the sign expansion. Length of this sequence corres-
pond to the birthday of the numbers in Conway'’s view.

e After defining operations (x,-+,a — w?) we can define expansion
with series. Gonshor has made a connection with the sign expansion
that is "natural".
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H‘ e Cuts (and games) : 3 /a Conway g=[neN| {w- n}
e Sign expansion : a la Gonshor g = (+)“(—,
e Hahn series : a la computer algebra doriw
<A

No is the class of all surreal numbers. It contains R, the
ordinals and many (many (many)) other ones (Ex :%, v/,
- W/« = logw).
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There are 3 main methods to define the surael numbers.

e The first is the vision of Conway. Conway was thinking them as cuts :
basically they are games that have strategies for Alice or Bob.

e Gonshor give another vision that is very connected with Conway'’s
view. It introduce the sign expansion. Length of this sequence corres-
pond to the birthday of the numbers in Conway'’s view.

e After defining operations (x,-+,a — w?) we can define expansion
with series. Gonshor has made a connection with the sign expansion
that is "natural".
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Inductive definitions

Theorem (Conway)

If L < R are two subsets of the surreal numbers then there is a
unique x with minimum length such that L < x < R
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L Inductive definitions

Ok, now we know how surreal numbers are built but now what about
operations ? If we speak about numbers, we need addition, multiplication...
First we have a theorem by Conway that enable us to build the surreal
numbers.
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Inductive definitions

Theorem (Conway)

If L < R are two subsets of the surreal numbers then there is a
unique x with minimum length such that L < x < R

x =[Lx | Ry] with
R« ={yax|y>x}

e Canonical Conway-representation :
Le={y<ax| y<x} and
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Ok, now we know how surreal numbers are built but now what about
operations ? If we speak about numbers, we need addition, multiplication...
First we have a theorem by Conway that enable us to build the surreal
numbers.

e But the first definition of Conway is very natural it will be the ca-
nonical form. But if we want to define operations, it can be difficult
to give the canocial representation of the image. That's why the the
previous theorem is very very interesting.
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Gumbers Theorem (Conway) Ok, now we know how surreal numbers are built but now what about

] operations ? If we speak about numbers, we need addition, multiplication...
If L < R are two subsets of the surreal numbers then there is a First we have a theorem by Conway that enable us to build the surreal

e b e unique x with minimum length such that L < x < R numbers.

operations

e Canonical Conway-representation : x = [Lx | Ry] with e But the first definition of Conway is very natural it will be the ca-

Ly={y<x| y<x} and R ={y<x| y>x} nonical form. But if we want to define operations, it can be difficult
to give the canocial representation of the image. That's why the the

e Use it to inductively define operations (addition, . . . .
previous theorem is very very interesting.

multiplication, genetic functions...)

e Then we will take the canonical representations to define operations.
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If L < R are two subsets of the surreal numbers then there is a
Gops n the s unique x with minimum length such that L < x < R

e Canonical Conway-representation : x = [Ly | Ry] with
Le={y<ax]|y<x} Re={y<x|y>x}
e Use it to inductively define operations (addition,
g multiplication, genetic functions...)

and

e Uniformity property : when the definition works for any
Conway-representations of the arguments
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Ok, now we know how surreal numbers are built but now what about
operations ? If we speak about numbers, we need addition, multiplication...
First we have a theorem by Conway that enable us to build the surreal
numbers.

e But the first definition of Conway is very natural it will be the ca-
nonical form. But if we want to define operations, it can be difficult
to give the canocial representation of the image. That's why the the
previous theorem is very very interesting.

e Then we will take the canonical representations to define operations.

e That is good but if we imagine that we want to define composition it
would be fine to be sure that any representation is fine to apply the
definition. It is the purpose of the uniformity property.
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If L < R are two subsets of the surreal numbers then there is a
Gops n the s unique x with minimum length such that L < x < R

e Canonical Conway-representation : x = [Ly | Ry] with
Le={y<ax]|y<x} Re={y<x|y>x}
e Use it to inductively define operations (addition,
g multiplication, genetic functions...)

and

e Uniformity property : when the definition works for any
Conway-representations of the arguments
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Ok, now we know how surreal numbers are built but now what about
operations ? If we speak about numbers, we need addition, multiplication...
First we have a theorem by Conway that enable us to build the surreal
numbers.

e But the first definition of Conway is very natural it will be the ca-
nonical form. But if we want to define operations, it can be difficult
to give the canocial representation of the image. That's why the the
previous theorem is very very interesting.

e Then we will take the canonical representations to define operations.

e That is good but if we imagine that we want to define composition it
would be fine to be sure that any representation is fine to apply the
definition. It is the purpose of the uniformity property.
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Surreal operations : Addition
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Definition de +
Definition
x+y=[Le+y, x+L,| R +y, x+R)]
Proposition

e Addition has the uniformity property.

e (No,+) is a commutative group.

Addition
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Shuentin urreal operations : ition, = Definitions and operations ==
example g Surreal operations : Addition, example
N
= wsd = o] o e
xemple de +

e y = -3 = [-4]0-1,-2-3]
o Ly+y = {-35,-25,-15,-0.5,0.5,...}
Gaps in the surreal _ 13
fields Then X + Ly —_— {CL) - T

Rity = {wfg}

_ 1 5 9
x+R, = {w+tjw—gw—3Fw—73}

al fields
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example g Surreal operations : Addition, example
N
X = w—i—% = [N,w,w%—%‘w—i—l} . o d
y = _% — [-4]0,-1,-2,-3] xemple de +
Ly+y = {-35,-25,-15,-0.5,0.5,...}
(J,m - = — E
Then { X T L lw—3

Rx+y = {W*E}

x+R, = {w+§,w—%,w—%,w—%}
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example g Surreal operations : Addition, example
N
X = wti = [N,w,w%—%‘w—i—l} Eremole d
y = _% — [-4]0,-1,-2,-3] xemple de +
Ly+y = {-35,-25,-15,-0.5,0.5,...}
_ _ 13
Then X+ Ly fw g
Ry + y = {w - g}
x+R = {w+iw—fw-—2w—73}

iy =fo-8]o-]

Xty =[(+)° === =+ | (=== +]
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example
x = w—i—% = [N,w,w%—%‘w—i—l}
y = -5 = [-4]0,-1,-2,-3
Ly+y = {-35,-25-15-05,05,...}
x+L, = {w-1
Then Y A
R« +y = {w—%}
x+R = {w+iw—fw-—2w—73}
x—i—y:{w—%’w—%}
Xy = [(HF = === | (= == 4]

Basically we have to choose between
(+H)Y——=——+++ and () ———+-
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Exemple de +
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Surreal operations : Addition,

example
x = w—i—% = [N,w,w%—%‘w—i—l}
y = -1 [—4]0,-1,-2,-3]
Ly+y = {-35,-25,-15-0.5,05,...}
x+L, = {w-1
Then Y 4
R« +y = {w—%}
x+R = {w+iw—fw-—2w—73}
x+y= {w—% ’ w—%}
xby =[(+) ===+ | (=== 4]
Basically we have to choose between
(+H)Y——=——+++ and () ———+-

Simplicity property :
xty=(+f-——+-=w-4
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Definition de x
Definitions and
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Ly + xl, — Ik, ey + xry — Ixr,
rxy + Xry — rxfy rxy + xl, — rgl,

Gaps in the surreal

fields X X _y —

Computable
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Surreal operations : Multiplication

Definition
XXy = Ly + xl, — Ik, Iy + xry,
ryy + xr, — rqry rxy + xl,
Proposition

e Multiplication has the uniformity property
e (No_ +, x) is field.

— Igry,

— rxly
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Proposition
Let x = [Ly | Ry] in the canonical representation. Then 1 is
defined as follows.

. (=0

e Foryp,...,yn € (Lx URy)\ {0},
1—(x=yn) 05+ ¥n-1)

Yn

{ Lijx ={ (o, ,ym) | [{i| yi € L} | € 2N}

Rl/x ={(0,---.yn) | [{i | yie Li}| €2N+1}

1
Then == [Ll I

<)/07--~7Yn> —

Rl/x}
And the definition has the uniformity property.
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Exponential function

Theorem (Gonshor [6])

It is possible to extend the function exp : R — R to
exp : No — No such that it has an inductive definition with
the uniformity property.

2019-11-26

Surreal numbers Exponential unctin

L_Surreal Numbers
Definitions and operations
I—Exponential function

e Even the exponential function has a nice definition ! In particular it is
inductive with uniform property.
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Exponential function

Theorem (Gonshor [6])

It is possible to extend the function exp : R — R to
exp : No — No such that it has an inductive definition with
the uniformity property.

Proposition (Van den Dries, Ehrlich [8])

There is a hierarchy of elementary extensions R C No.) C No
(for X an e-number) for the language of ordered fields together
with exp (and restricted analytic functions).
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e Even the exponential function has a nice definition ! In particular it is
inductive with uniform property.

e The definition of the exponential function is very satisfying, it has all
the suitable first order properties of the exponential function.
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Exponential function

Theorem (Gonshor [6])

It is possible to extend the function exp : R — R to
exp : No — No such that it has an inductive definition with
the uniformity property.

Proposition (Van den Dries, Ehrlich [8])

There is a hierarchy of elementary extensions R C No_.) C No
(for X an e-number) for the language of ordered fields together
with exp (and restricted analytic functions).

sin and cos do not admit extension to surreal number.
You would need to give sense to exp(iw).
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I—Exponential function

e Even the exponential function has a nice definition ! In particular it is
inductive with uniform property.

e The definition of the exponential function is very satisfying, it has all
the suitable first order properties of the exponential function.

e What does it mean to orbit w times around the origin ? Even worth :

Vw times?
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Notation

Surreal numbers of bounded length

No., = {x € No | length(x) < a}
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e So far we were interested in the whole class of surreal numbers. But
there are sub-structures that may be interesteing. Typically, what
about the set of surreal numbers of bounded length (or birthday).

e The very first question is, what are the conditions on « so that we
have usual algebraic structures.
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N
Notation
e No.. = {x € No | length(x) < a} e So far we were interested in the whole class of surreal numbers. But
S = there are sub-structures that may be interesteing. Typically, what
- Proposition (Van den Dries and Ehrlich [8], corollaries 3.1, about the set of surreal numbers of bounded length (or birthday).
4.4 and 4.9) e The very first question is, what are the conditions on o so that we
No_) is have usual algebraic structures.
e an additive group iff X is additive (i.e has form A = w® for e The answer is very intuitive : it is basically the desired property applied
some ordinal o) to the ordinal that bounds the length.

e is a ring iff \ is multiplicative (i.e has form \ = w*" for
some ordinal o)

e is a field iff \ is an e-number (i.e satisfies A = w™)
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g L-Interlude : Hahn series
N
Definition (Hahn series field)
Let K be a field and I an Abelian ordered group. The So far we have seen the the two first definition of the surreal numbers.
. T What about the third one?
e associated formal power series field denoted K((t")) is at about the Third one
s e We first define Hahn series.
o { Syt |, €K, supp(x) = {~v | r, # 0} is well ordered}
vel
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Definition (Hahn series field)

Let K be a field and ' an Abelian ordered group. The
associated formal power series field denoted K((t")) is

Syt |, €K, supp(x) = {~v | r, # 0} is well ordered}
vel
This fields admits a natural notion of order, the lexicographical

order.
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So far we have seen the the two first definition of the surreal numbers.
What about the third one?

o We first define Hahn series.

e This is an ordered field

Interlude : Hahn series
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Definition (Hahn series field)

Let K be a field and ' an Abelian ordered group. The
associated formal power series field denoted K((t")) is

Syt | r, €K, supp(x) = {7 | r, # 0} is well ordered
vel
This fields admits a natural notion of order, the lexicographical

order.

Theorem (Gonshor, [6])

Every x in No can be written in a unique way as x = > riw?

i<a
with r; € R and the a; € No decreasing and No ~ R((t"V°))
(ordered fields isomorphism).
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L Interlude : Hahn series

So far we have seen the the two first definition of the surreal numbers.
What about the third one?

o We first define Hahn series.
e This is an ordered field

e We have a very good isomorphism that links the sign expansions and
the Hahn series. Moreover the the sign expansion can be "easily" de-
duced from the Hahn series. Finally the Hahn series of ordinal number
seen as surreal numbers are their normal forms as usual ordinals.
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e Sub-fields from Hahn series 1 Sl M
Suentin u = L-Sub-structure and Hahn series
g L-Sub-fields from Hahn series
N
Theorem (Alling [1], Van den Dries, Ehrlich [8])
Let K be real-closed and T divisible. Let \ be an e-number. e Alling worked with cardinal. numbers as length f?r the. sums but w!th
Then K a real-closed field, Ehrlich and Van den Dries with R but with

ordinal length.

K| = {X e K((t")) ’ supp xhas order type lower than )\}

. . e This second theorem enable us to make a link between the two types
is a real-closed field.

of field we have seen so far.
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Theorem (Alling [1], Van den Dries, Ehrlich [8])
Let K be real-closed and I divisible. Let \ be an e-number.
Then

K| = {X e K((t")) ’ supp xhas order type lower than )\}
is a real-closed field.

Theorem (Van den Dries, Ehrlich [8])
If X is an e-number then

No_y =~ J Ry°<"
p<A
where 11 ranges over multiplicative ordinals. If \ is a regular

. No
cardinal then No_y ~ R"<*
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L_Sub-fields from Hahn series

e Alling worked with cardinal numbers as length for the sums but with
K a real-closed field, Ehrlich and Van den Dries with R but with
ordinal length.

e This second theorem enable us to make a link between the two types
of field we have seen so far.
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Definition

e A cutis a couple of sets L, R C K C No such that L < R. Dreilnliffon @it e e Cauchy

S e Acut L< Risagapof Kif [L| R] ¢ K. It is non-trivial
Gapsin the sureal if L has no maximum and R has no minimum.
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Gaps in the surreal
fields.

Cuts and gaps

Definition
e A cutis a couple of sets L, R C K C No such that L < R.

e Acut L< Risagapof Kif [L| R] ¢ K. It is non-trivial
if L has no maximum and R has no minimum.

Example
If L =N and R:{wa

ae (No<u):}, then L < R is a gap

of RTOQ‘. This special gap is denoted oc.
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Gaps in the surreal
fields.

Cuts and gaps

Definition
e A cutis a couple of sets L, R C K C No such that L < R.

e Acut L< Risagapof Kif [L| R] ¢ K. It is non-trivial
if L has no maximum and R has no minimum.

Example
If L =N and R:{wa

of RTOQ‘. This special gap is denoted oc.

ae (No<u):}, then L < R is a gap

Definition (Cauchy Cut)

L < Ris a Cauchy-cut of K if for all € € K* there are / € L
and r € Rsuch that r — | < .
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Définition cut, gap et Cauchy-gap

Cuts and gaps
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Gaps in the surreal
fields.

Types of Gaps in No

Proposition (Conway, [3])
Gaps in No may be of the form :

‘eZO: dr,'wa" (Type 1)
] r

Forx € No and G agap x+ w9 (Type 2)
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LSurreal Numbers
Gaps in the surreal fields.
I—Types of Gaps in No

Les deux types de gap
Please notice that there are only non trivial gaps. That is because if there
were a non-trivial gap, one of the set L or R involved in the gap would

actually be a proper class.

Types of Gaps in No

(e 1)

(Type 2)
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K is Cauchy-complete iff it has no non-trivial Cauchy gap.

po._ pNo<y . .
R :=R\"™" has a simple Cauchy-completion. o If we speak about Cauchy gap, it is because we can avoid them. In

particular we can have a complete field. The difference with a real
- case being that the sequence must have length the degree of the field,
which is the coinitiality of the set of positive elements of the field.

Cauchy completion
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Cauchy completion

Cauchy cuts and Cauchy
completion

K is Cauchy-complete iff it has no non-trivial Cauchy gap.
RY = R/'\\|°<“ has a simple Cauchy-completion.
Proposition

The Cauchy-completion of RY is

R/;\ = R‘; U { Z I’iwai
i<

ri € R, aj € No., are coinitia/}
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Cauchy completion
Cauchy cuts and Cauchy completion

e |If we speak about Cauchy gap, it is because we can avoid them. In
particular we can have a complete field. The difference with a real
case being that the sequence must have length the degree of the field,
which is the coinitiality of the set of positive elements of the field.

e Def : Coinitial, Cofinal, Coinitiality, Cofinality.

e With Hahn series, we have a nice Cauchy completion
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Cauchy cuts and Cauchy
completion

K is Cauchy-complete iff it has no non-trivial Cauchy gap.
RY = R/'\\Io<“ has a simple Cauchy-completion.
Proposition

The Cauchy-completion of RY is

R/;\ = R‘; U { Z I’iwai
i<

ri € R, aj € No., are coinitia/}

Proposition
Non-trivial gaps in R may be of the form :

For (a;); not coinitial > riwd (Type 1)
<A

For x € RY and G a gap of No,,
x + w9 (Type 2)
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LComputations with surreal numbers, existing me-
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Cauchy completion
Cauchy cuts and Cauchy completion

e |If we speak about Cauchy gap, it is because we can avoid them. In

particular we can have a complete field. The difference with a real
case being that the sequence must have length the degree of the field,
which is the coinitiality of the set of positive elements of the field.

e Def : Coinitial, Cofinal, Coinitiality, Cofinality.
e With Hahn series, we have a nice Cauchy completion

e The remaining gaps are exactly what we expect. In particular, in type

1 gaps we just get rid of the case where the (a;)s are coinitial.
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HITSEES . . . & L-Computations with surreal numbers, existing me-
Quentin Motivation for Cauchy-completion - i ! 2 -
Guilmant ‘_'. thOdS

9

o

N

Cauchy-completion and Dedekind-completion are different. It is because
Cauchy_comp|etion is less powerfu| than Dedekind-completion the field is not Archimedean. Dedekind-completion is much more powerful.
; (no non-trivial gap remaining). 59 we have to give a motivation for the use of Cauchy-completion. Voir
the surea slide : bonne propriétés

Dedekind completion would introduce new elements that are even not

surreal number (such as oo). Of course you may say there are surreal

numbers that are not the considered field and that would be able to play
Coucy compleen the role of co. But adding them create even more gaps because you want
Sl to get a field at the end !

Motivation for Cauchy-completion
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N Motivation for Cauchy-completion
Cauchy-completion and Dedekind-completion are different. It is because
Cauchy_comp|etion is less powerfu| than Dedekind-completion the field is not Archimedean. Dedekind-completion is much more powerful.

(no non-trivial gap remaining). Many gaps remain in R’; o 59 we have to give a motivation for the use of Cauchy-completion. Voir
slide : bonne propriétés
why a Cauchy-completion ?
Dedekind completion would introduce new elements that are even not
surreal number (such as oo). Of course you may say there are surreal
numbers that are not the considered field and that would be able to play
Coucy compleen the role of co. But adding them create even more gaps because you want

to get a field at the end!
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Motivation for Cauchy-completion

Cauchy-completion is less powerful than Dedekind-completion
(no non-trivial gap remaining). Many gaps remain in R’; so
why a Cauchy-completion ?
e Cauchy-sequences (possibly with larger length) will
converge (needed for some powerful theorem in analysis)
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Motivation for Cauchy-completion

Cauchy-completion and Dedekind-completion are different. It is because
the field is not Archimedean. Dedekind-completion is much more powerful.
So we have to give a motivation for the use of Cauchy-completion. Voir
slide : bonne propriétés

Dedekind completion would introduce new elements that are even not
surreal number (such as oo). Of course you may say there are surreal
numbers that are not the considered field and that would be able to play
the role of co. But adding them create even more gaps because you want
to get a field at the end!



Surreal
numbers

Quentin
Guilmant

Cauchy completion

Motivation for Cauchy-completion

Cauchy-completion is less powerful than Dedekind-completion
(no non-trivial gap remaining). Many gaps remain in R’; so
why a Cauchy-completion ?

e Cauchy-sequences (possibly with larger length) will
converge (needed for some powerful theorem in analysis)

e Computable analysis, Cauchy representations

2019-11-26
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LComputations with surreal numbers, existing me-
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Cauchy completion
Motivation for Cauchy-completion

Cauchy-completion and Dedekind-completion are different. It is because
the field is not Archimedean. Dedekind-completion is much more powerful.
So we have to give a motivation for the use of Cauchy-completion. Voir
slide : bonne propriétés

Dedekind completion would introduce new elements that are even not
surreal number (such as oo). Of course you may say there are surreal
numbers that are not the considered field and that would be able to play
the role of co. But adding them create even more gaps because you want
to get a field at the end!
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Cauchy-completion and Dedekind-completion are different. It is because
Cauchy_comp|etion is less powerfu| than Dedekind-completion the field is not Archimedean. Dedekind-completion is much more powerful.
i So we have to give a motivation for the use of Cauchy-completion. Voir
slide : bonne propriétés

(no non-trivial gap remaining). Many gaps remain in R’; so

why a Cauchy-completion 7
Y Y P ) ) ) Dedekind completion would introduce new elements that are even not
e Cauchy-sequences (possibly with larger length) will

_ ) surreal number (such as oo). Of course you may say there are surreal
converge (needed for some powerful theorem in analysis)

numbers that are not the considered field and that would be able to play
Couchs campleen e Computable analysis, Cauchy representations the role of co. But adding them create even more gaps because you want

e Better generalization of R to get a field at the end!
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Gapt e e e RY admits a notation over {0,1}<*. It is dense in RY.
e Intervals of R with bounds in Rf have a notation.

e Give R a structure of an effective (topological) space.

Cauchy completion

Computable Analysis
over surreal fields
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Definition (A-effective space)

A \-effective space is a triplet M = (M, 0,v) with M a set,
o C 2M 3 collection of subsets of M such that

o x=y & {Aco| xecAl={Aco| yecA}
and v :C {0,1}<* — ¢ is a notation.

Cauchy completion

Computable Analysis
over surreal fields
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Computable Analysis
over surreal fields

Interlude : Effective space

Definition (\-effective space)

A \-effective space is a triplet M = (M, 0,v) with M a set,
o C 2M 3 collection of subsets of M such that

x=y << {Aco|xecAl={Aco]| ycA}
and v :C {0,1}<* — ¢ is a notation.
Definition
e The standard topology T, is the topology induced by o

e The standard representation du :C {0,1}* — M is given
by

Sm(p)=x & {Aca|xeA}={v(w)]| w)C p}

2019-11-26
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I—Computable Analysis over surreal fields
L Interlude : Effective space

Interlude : Effective space

(W) w) = p}
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Computable Analysis
over surreal fields

Intervals representation (2/2)

o Take 0 = {]a;b[ | a,b € Ry} and v a notation over o.
. (@;,a, v) is A-effective

e T, is the interval topology.
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Intervals representation (2/2)

Intervals representation (2,
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v Definition
‘ Se(p) =x & { p= L(WO)L(W-l) =
(¥(Wa)) ey is quickly convergent to x
1
a+1

Va<p <A lv(we) — v(wg)| <

Cauchy completion

emierase  Proposition (Galeotti [5])

over surreal fields

0am and é¢ are equivalent.
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Cauchy completion

Computable Analysis
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Motivation : Analog
computing

Some pi

Handle the

Analog computers over the reals

Definition

uxyv

v —

u-+v

— wp + ftz udv
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Analog computers over the reals
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t J / sinh t

Cauchy completion

Computabi

over surreal fields

Motivation : Analog
computing

Some pi
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Motivation : Analog
computing

Computing sinh

t Ik Ik sinh t

e GPACs correspond to (vectorial) pODE.
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L_Problem of integration
Motivation : Analog computing
I—Computing sinh

Computing sinh

 GPACS correspond to (vectorial) pODE.
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‘1 he surrea t f f sinh t

e GPACs correspond to (vectorial) pODE.

e Polynomials are continuous and locally Lipschitz.
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(a.k.a Cauchy-Lipschitz) Theorem

Motivation : Analog
computing

A solution exists The solution is unique
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Motivation : Analog computing
Dependences for Picard-Lindel6f (a.k.a
Cauchy-Lipschitz) Theorem
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(a.k.a Cauchy-Lipschitz) Theorem

| Integral operator|
/

|A solution exists| | The solution is unique
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(a.k.a Cauchy-Lipschitz) Theorem

| Integral operator| Gronwall
/

|A solution exists| | The solution is unique|
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(a.k.a Cauchy-Lipschitz) Theorem

| Sign of the derivative < variations|

| Integral operator| Gronwall
/

|A solution exists| | The solution is unique|

Dependences for P
(akaC

auchy-Lipsc!

hitz) Theore

indelof
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| Sign of the derivative < variations|

| Integral operator| Gronwall
/

|A solution exists| | The solution is unique|
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| Integral operator| Gronwall
/

|A solution exists| | The solution is unique|

2019-11-26

Surreal numbers
L_Problem of integration
Motivation : Analog computing
L Dependences for Picard-Lindelsf (ak.a
Cauchy-Lipschitz) Theorem

Dependences fo
(ak.a Cauchy-Li




Surreal Surreal numbers

numbers . . . I_Problem Of integl’ation
Quentin Dependences for Picard-Lindelof Motivation : Analog computing

Guilman . .
t (a.k.a CaUChy—LIpSChItZ) Theorem L—Dependences for Picard-Lindelsf (a.k.a
Cauchy-Lipschitz) Theorem

2019-11-26

EVT
[Fole}— __
| Sign of the derivative < variations|

[
| Integral Operator| Gronwall
—

|A solution exists| | The solution is unique|

Depende

(ak.a Cauchy-Li

or Picard-Lindels
pschitz) Theore

indelof
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| Sign of the derivative < variations|

[

Gronwall

N

|A solution exists| | The solution is unique|
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| Sign of the derivative < variations|
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Gronwall
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| A solution exists |

| The solution is unique|
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| Sign of the derivative < variations|
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Gronwall
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| A solution exists |

| The solution is unique|
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Definition (Rubinstein-Salzedo, Swaminathan [7])
Let K C No, F C (K" — K) and .# be its (+, X, o)-closure.

Let f : [a; b] — K continuous. If there is g € % such that

:/J»m - nd_ d_
VneNVa<c<d<b g(nc,d =25 Cf(c+iTC

Then for a € K an ordinal g(«, a, b) is called the
(K, F)-Riemann sum of f of order a.
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Definition (Rubinstein-Salzedo, Swaminathan [7])
Let K C No, F C (K" — K) and .# be its (+, X, o)-closure.

n
Let f : [a; b] — K continuous. If there is g € % such that

G ;; the surreal n d_ d_
VneNVa<c<d<b g(nc,d =25 Cf(c—s—iTC)

Then for a € K an ordinal g(«, a, b) is called the
(K, F)-Riemann sum of f of order a.

Is g unique ? Do the properties of g for n € N transfer to
ordinal number?
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Fornasiero [4] : Give an inductive definition for the integration
operator. Works with "genetic definitions".

putable

over surreal fields
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A Comparison 8 L Problem of integration
Suentin pari = Some previous tries
g Comparison
N
Fornasiero Rubinstein
b
J; cdt
Linearity
Definite Not studied
("Recursive functions")
-b
JPF=F(B)— F(2) X
TFA (not unique) (not unique)
Rolle (strongly
continuous)
IAF Non étudiée
R — Integration Genetic "recursive" Riemann sums
hypothesis (pathological) converge
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compacity.

Strongly compact subsets

Gaps are the problem. Strongly compact sets must have
a Lebesgue-Borel-like property but must be blind to gaps.
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Handle the gaps, a
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compacity.

Strongly compact subsets

Gaps are the problem. Strongly compact sets must have
a Lebesgue-Borel-like property but must be blind to gaps.

Definition ((\, pt)-strongly-compact set)
If X is a set of open intervals of RY, let B(X) the set of the

bounds of theses intervals. Now, a subset X C R‘A‘ is said
(A, p)-strongly-compact if for any covering X’ of X by open
intervals with no non-trivial partition L U R = B(X) such that

L<Rand[L]| R]is agap in R, there is a finite sub-covering.

2019-11-26
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Handle the gaps, a
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compacity.

Strongly compact subsets

Gaps are the problem. Strongly compact sets must have
a Lebesgue-Borel-like property but must be blind to gaps.

Definition ((\, pt)-strongly-compact set)

If X is a set of open intervals of RY, let B(X) the set of the
bounds of theses intervals. Now, a subset X C ]I/%TA‘ is said

(A, p)-strongly-compact if for any covering X’ of X by open
intervals with no non-trivial partition L U R = B(X) such that
L<Rand[L| R]isagapin I@L there is a finite sub-covering.
In other words : Every no-gap-showing covering admits a finite
sub-covering.

2019-11-26

Surreal numbers
L Problem of integration
LHandle the gaps, a new notion of compacity.
I—Strongly compact subsets
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Alternative definitions

Theorem -

\, t)-strongly-compact set the subsets X C RY such that one
A

of the following is true
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Handle the gaps, a
new notion of
compacity.

Alternative definitions

Theorem .
(X, p)-strongly-compact set the subsets X C RY such that one
of the following is true

e X is closed and for any Y C X such that supY (resp.

inf Y) is a gap, there is Z C X such that infZ = supY
(resp. supZ =inf Y)

2019-11-26
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Handle the gaps, a
new notion of
compacity.

Alternative definitions

Theorem .

\, t)-strongly-compact set the subsets X C RY such that one
A

of the following is true

e X is closed and for any Y C X such that supY (resp.
inf Y) is a gap, there is Z C X such that infZ = supY
(resp. supZ =inf Y)

e Every covering no-gap-showing X of X by open sets admits
a finite sub-covering.

2019-11-26

Surreal numbers et defnons

L Problem of integration
LHandle the gaps, a new notion of compacity.
Alternative definitions

With open sets : open sets are union of (strongly)-disjoint open intervals.
You have to consider the bounds of such intervals to say that a covering
is or not gap-showing.
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Handle the gaps, a
new notion of
compacity.

Alternative definitions

Theorem .
(X, p)-strongly-compact set the subsets X C RY such that one
of the following is true
e X is closed and for any Y C X such that supY (resp.
inf Y) is a gap, there is Z C X such that infZ = supY
(resp. supZ =inf Y)
e Every covering no-gap-showing X of X by open sets admits
a finite sub-covering.
e Gaps [L | R] are allowed if there is Y € X and | C'Y an
open interval such that inf | <[L| R] <supl
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Surreal numbers et defnons

L Problem of integration
LHandle the gaps, a new notion of compacity.
Alternative definitions

With open sets : open sets are union of (strongly)-disjoint open intervals.
You have to consider the bounds of such intervals to say that a covering
is or not gap-showing.
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Strongly continuous functions

Definition
A function f : RY — RY is said to be
(A, p)-strongly-continuous if it is continuous and for any
non-trivial gap G = [L | R] of RY either f has a limit in G that
is reached on any neighborhood of G or there is a non-trivial
gap H =[A | B] such that for any neighborhood J of H there
is a neighborhood / of G such that

xel = f(x)eJ

f(DN]H;supJ[# @ and f(hN]infJ;H[ # o
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Basic analysis of strongly
continuous functions

Proposition (Intermediate value theorem)

Let f : RN — RY be (), u)-strongly-continuous . Assume

f(a) < f(b). Then for all

y € [min(f(a), f(b)); max(f(a),f(b))] there is a < c < b such
that f(c) =y.

Theorem (Extreme Value Theorem)

Let f: I@ — I@f be a (A, p)-strongly-continuous function. Let

X C RY be a (A, p)-strongly-compact set, then f(X) is also
(A, p)-strongly-compact . In particular, it has a maximum and a
minimum on X.
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Cauchy completio:

Computable Analysi
over surreal field

lotivation : Anal
computing

compacit;

Strongly continuous
functions

Example
The following functions are strongly continuous :
e Polynomials, exponential, logarithm
e Arctan (inductive definition from Rubinstein-Salzedo [7])

e Composition of (A, p)-strongly-continuous functions
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Example
The following functions are strongly continuous :

Polynomials, exponential, logarithm

Arctan (inductive definition from Rubinstein-Salzedo [7])

Composition of (A, uu)-strongly-continuous functions

X X < 00
x+1 x>o00

X =
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Strongly continuous
functions

Example
The following functions are strongly continuous :

Polynomials, exponential, logarithm

Arctan (inductive definition from Rubinstein-Salzedo [7])

Composition of (A, uu)-strongly-continuous functions

X X < 00
x+1 x>o00

X =

(A, p)-strongly-continuous functions are not stable under
ring operations +, x

2019-11-26

Surreal numbers
L Problem of integration
LStroneg continuous functions




Surreal
numbers

Quentin
Guilmant

Gaps in the surreal
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Cauchy comple
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Perspectives

Integration with Stone-Weierstrass

e Find a suitable ring of (\, pt)-strongly-continuous functions
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Integration with Stone-Weierstrass

e Find a suitable ring of (\, pt)-strongly-continuous functions

e On closed intervals, make them approachable by suitable
strongly continuous functions for which we do know a
primitive (Stone-Weierstrass-like theorem)
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Perspectives

Integration with Stone-Weierstrass

e Find a suitable ring of (\, pt)-strongly-continuous functions

e On closed intervals, make them approachable by suitable
strongly continuous functions for which we do know a
primitive (Stone-Weierstrass-like theorem)

e Define integration with limits for such functions.
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Perspectives

Suitable restricted set theory

Gaps are "very" outside the surreal fields.

If we consider a suitable (with notions of constructivism) set
theory (something like what is introduced in Barwise, [2]),
strongly compact sets may be the actual compact sets and
strongly continuous functions, the continuous function.
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