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Numbers

• If we want to talk about surreal numbers, the very first thing to
wonder what is a number. In classical set theory we start from the
emptyset and build numbers, then rationnal numbers and finally with
Cauchy-completion or Dedekind-completion.

• R is the unique field that is both Archimedean and complete. This
properties and fundamental to prove fundamental theorems of analy-
sis (TVE, TVI, Rolle, Mean Value Theorem, Fixed Point Theorems).
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Numbers

• If we want to talk about surreal numbers, the very first thing to
wonder what is a number. In classical set theory we start from the
emptyset and build numbers, then rationnal numbers and finally with
Cauchy-completion or Dedekind-completion.

• R is the unique field that is both Archimedean and complete. This
properties and fundamental to prove fundamental theorems of analy-
sis (TVE, TVI, Rolle, Mean Value Theorem, Fixed Point Theorems).

• With ordinal number instead of natural numbers we may get other
things. We may get a lot of new numbers, that may look like the
normal form of ordinal theorems.
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3 methods to think about surreal
numbers

• Cuts (and games) : à la Conway ω
2 = [n ∈ N | {ω − n}n]

• Sign expansion : à la Gonshor ω
2 = (+)ω(−)ω

• Hahn series : à la computer algebra
∑
i<λ

riωai

No is the class of all surreal numbers. It contains R, the
ordinals and many (many (many)) other ones (Ex :ω2 ,

√
ω,

ω1/ω = logω).
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Definitions and operations
3 methods to think about surreal numbers

There are 3 main methods to define the surael numbers.

• The first is the vision of Conway. Conway was thinking them as cuts :
basically they are games that have strategies for Alice or Bob.
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Definitions and operations
3 methods to think about surreal numbers

There are 3 main methods to define the surael numbers.

• The first is the vision of Conway. Conway was thinking them as cuts :
basically they are games that have strategies for Alice or Bob.

• Gonshor give another vision that is very connected with Conway’s
view. It introduce the sign expansion. Length of this sequence corres-
pond to the birthday of the numbers in Conway’s view.
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3 methods to think about surreal numbers

There are 3 main methods to define the surael numbers.

• The first is the vision of Conway. Conway was thinking them as cuts :
basically they are games that have strategies for Alice or Bob.

• Gonshor give another vision that is very connected with Conway’s
view. It introduce the sign expansion. Length of this sequence corres-
pond to the birthday of the numbers in Conway’s view.

• After defining operations (×,+, a 7→ ωa) we can define expansion
with series. Gonshor has made a connection with the sign expansion
that is "natural".
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1
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5
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9
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2
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x + y = [(+)ω −−−−+ + | (+)ω −−−+]

Basically we have to choose between
(+)ω −−−−+ + + and (+)ω −−−+−

Simplicity property :
x + y = (+)ω −−−+− = ω − 11

4

Surreal operations : Addition,
example

x = ω + 3
4 =

[
N, ω, ω + 1

2

∣∣∣ ω + 1
]

y = −7
2 = [−4 | 0,−1,−2,−3]

Then


Lx + y = {−3.5,−2.5,−1.5,−0.5, 0.5, . . .}
x + Ly = {ω − 13

4 }
Rx + y = {ω − 5

2}
x + Ry = {ω + 3

4 , ω −
1
4 , ω −

5
4 , ω −

9
4}

x + y =
[
ω − 13

4

∣∣∣ ω − 5
2

]
x + y = [(+)ω −−−−+ + | (+)ω −−−+]

Basically we have to choose between
(+)ω −−−−+ + + and (+)ω −−−+−

Simplicity property :
x + y = (+)ω −−−+− = ω − 11

4

20
19

-1
1-

26

Surreal numbers
Surreal Numbers

Definitions and operations
Surreal operations : Addition, example

Exemple de +



Surreal
numbers

Quentin
Guilmant

Introduction :
Numbers

Surreal
Numbers
Definitions and
operations

Sub-structure and
Hahn series

Gaps in the surreal
fields.

Computations
with surreal
numbers,
existing
methods
Cauchy completion

Computable Analysis
over surreal fields

Problem of
integration
Motivation : Analog
computing

Some previous tries

Handle the gaps, a
new notion of
compacity.

Strongly continuous
functions

Perspectives

Surreal operations : Addition,
example

x = ω + 3
4 =

[
N, ω, ω + 1

2

∣∣∣ ω + 1
]

y = −7
2 = [−4 | 0,−1,−2,−3]

Then


Lx + y = {−3.5,−2.5,−1.5,−0.5, 0.5, . . .}
x + Ly = {ω − 13

4 }
Rx + y = {ω − 5

2}
x + Ry = {ω + 3

4 , ω −
1
4 , ω −

5
4 , ω −

9
4}

x + y =
[
ω − 13

4

∣∣∣ ω − 5
2

]
x + y = [(+)ω −−−−+ + | (+)ω −−−+]

Basically we have to choose between
(+)ω −−−−+ + + and (+)ω −−−+−

Simplicity property :
x + y = (+)ω −−−+− = ω − 11

4

Surreal operations : Addition,
example

x = ω + 3
4 =

[
N, ω, ω + 1

2

∣∣∣ ω + 1
]

y = −7
2 = [−4 | 0,−1,−2,−3]

Then


Lx + y = {−3.5,−2.5,−1.5,−0.5, 0.5, . . .}
x + Ly = {ω − 13

4 }
Rx + y = {ω − 5

2}
x + Ry = {ω + 3

4 , ω −
1
4 , ω −

5
4 , ω −

9
4}

x + y =
[
ω − 13

4

∣∣∣ ω − 5
2

]
x + y = [(+)ω −−−−+ + | (+)ω −−−+]

Basically we have to choose between
(+)ω −−−−+ + + and (+)ω −−−+−

Simplicity property :
x + y = (+)ω −−−+− = ω − 11

4

20
19

-1
1-

26

Surreal numbers
Surreal Numbers

Definitions and operations
Surreal operations : Addition, example

Exemple de +



Surreal
numbers

Quentin
Guilmant

Introduction :
Numbers

Surreal
Numbers
Definitions and
operations

Sub-structure and
Hahn series

Gaps in the surreal
fields.

Computations
with surreal
numbers,
existing
methods
Cauchy completion

Computable Analysis
over surreal fields

Problem of
integration
Motivation : Analog
computing

Some previous tries

Handle the gaps, a
new notion of
compacity.

Strongly continuous
functions

Perspectives

Surreal operations : Addition,
example

x = ω + 3
4 =

[
N, ω, ω + 1

2

∣∣∣ ω + 1
]

y = −7
2 = [−4 | 0,−1,−2,−3]

Then


Lx + y = {−3.5,−2.5,−1.5,−0.5, 0.5, . . .}
x + Ly = {ω − 13

4 }
Rx + y = {ω − 5

2}
x + Ry = {ω + 3

4 , ω −
1
4 , ω −

5
4 , ω −

9
4}

x + y =
[
ω − 13

4

∣∣∣ ω − 5
2

]

x + y = [(+)ω −−−−+ + | (+)ω −−−+]
Basically we have to choose between

(+)ω −−−−+ + + and (+)ω −−−+−
Simplicity property :

x + y = (+)ω −−−+− = ω − 11
4

Surreal operations : Addition,
example

x = ω + 3
4 =

[
N, ω, ω + 1

2

∣∣∣ ω + 1
]

y = −7
2 = [−4 | 0,−1,−2,−3]

Then


Lx + y = {−3.5,−2.5,−1.5,−0.5, 0.5, . . .}
x + Ly = {ω − 13

4 }
Rx + y = {ω − 5

2}
x + Ry = {ω + 3

4 , ω −
1
4 , ω −

5
4 , ω −

9
4}

x + y =
[
ω − 13

4

∣∣∣ ω − 5
2

]

x + y = [(+)ω −−−−+ + | (+)ω −−−+]
Basically we have to choose between

(+)ω −−−−+ + + and (+)ω −−−+−
Simplicity property :

x + y = (+)ω −−−+− = ω − 11
4

20
19

-1
1-

26

Surreal numbers
Surreal Numbers

Definitions and operations
Surreal operations : Addition, example

Exemple de +



Surreal
numbers

Quentin
Guilmant

Introduction :
Numbers

Surreal
Numbers
Definitions and
operations

Sub-structure and
Hahn series

Gaps in the surreal
fields.

Computations
with surreal
numbers,
existing
methods
Cauchy completion

Computable Analysis
over surreal fields

Problem of
integration
Motivation : Analog
computing

Some previous tries

Handle the gaps, a
new notion of
compacity.

Strongly continuous
functions

Perspectives

Surreal operations : Addition,
example

x = ω + 3
4 =

[
N, ω, ω + 1

2

∣∣∣ ω + 1
]

y = −7
2 = [−4 | 0,−1,−2,−3]

Then


Lx + y = {−3.5,−2.5,−1.5,−0.5, 0.5, . . .}
x + Ly = {ω − 13

4 }
Rx + y = {ω − 5

2}
x + Ry = {ω + 3

4 , ω −
1
4 , ω −

5
4 , ω −

9
4}

x + y =
[
ω − 13

4

∣∣∣ ω − 5
2

]
x + y = [(+)ω −−−−+ + | (+)ω −−−+]

Basically we have to choose between
(+)ω −−−−+ + + and (+)ω −−−+−

Simplicity property :
x + y = (+)ω −−−+− = ω − 11

4

Surreal operations : Addition,
example

x = ω + 3
4 =

[
N, ω, ω + 1

2

∣∣∣ ω + 1
]

y = −7
2 = [−4 | 0,−1,−2,−3]

Then


Lx + y = {−3.5,−2.5,−1.5,−0.5, 0.5, . . .}
x + Ly = {ω − 13

4 }
Rx + y = {ω − 5

2}
x + Ry = {ω + 3

4 , ω −
1
4 , ω −

5
4 , ω −

9
4}

x + y =
[
ω − 13

4

∣∣∣ ω − 5
2

]
x + y = [(+)ω −−−−+ + | (+)ω −−−+]

Basically we have to choose between
(+)ω −−−−+ + + and (+)ω −−−+−

Simplicity property :
x + y = (+)ω −−−+− = ω − 11

4

20
19

-1
1-

26

Surreal numbers
Surreal Numbers

Definitions and operations
Surreal operations : Addition, example

Exemple de +



Surreal
numbers

Quentin
Guilmant

Introduction :
Numbers

Surreal
Numbers
Definitions and
operations

Sub-structure and
Hahn series

Gaps in the surreal
fields.

Computations
with surreal
numbers,
existing
methods
Cauchy completion

Computable Analysis
over surreal fields

Problem of
integration
Motivation : Analog
computing

Some previous tries

Handle the gaps, a
new notion of
compacity.

Strongly continuous
functions

Perspectives

Surreal operations : Addition,
example

x = ω + 3
4 =

[
N, ω, ω + 1

2

∣∣∣ ω + 1
]

y = −7
2 = [−4 | 0,−1,−2,−3]

Then


Lx + y = {−3.5,−2.5,−1.5,−0.5, 0.5, . . .}
x + Ly = {ω − 13

4 }
Rx + y = {ω − 5

2}
x + Ry = {ω + 3

4 , ω −
1
4 , ω −

5
4 , ω −

9
4}

x + y =
[
ω − 13

4

∣∣∣ ω − 5
2

]
x + y = [(+)ω −−−−+ + | (+)ω −−−+]

Basically we have to choose between
(+)ω −−−−+ + + and (+)ω −−−+−

Simplicity property :
x + y = (+)ω −−−+− = ω − 11

4

Surreal operations : Addition,
example

x = ω + 3
4 =

[
N, ω, ω + 1

2

∣∣∣ ω + 1
]

y = −7
2 = [−4 | 0,−1,−2,−3]

Then


Lx + y = {−3.5,−2.5,−1.5,−0.5, 0.5, . . .}
x + Ly = {ω − 13

4 }
Rx + y = {ω − 5

2}
x + Ry = {ω + 3

4 , ω −
1
4 , ω −

5
4 , ω −

9
4}

x + y =
[
ω − 13

4

∣∣∣ ω − 5
2

]
x + y = [(+)ω −−−−+ + | (+)ω −−−+]

Basically we have to choose between
(+)ω −−−−+ + + and (+)ω −−−+−

Simplicity property :
x + y = (+)ω −−−+− = ω − 11

4

20
19

-1
1-

26

Surreal numbers
Surreal Numbers

Definitions and operations
Surreal operations : Addition, example

Exemple de +



Surreal
numbers

Quentin
Guilmant

Introduction :
Numbers

Surreal
Numbers
Definitions and
operations

Sub-structure and
Hahn series

Gaps in the surreal
fields.

Computations
with surreal
numbers,
existing
methods
Cauchy completion

Computable Analysis
over surreal fields

Problem of
integration
Motivation : Analog
computing

Some previous tries

Handle the gaps, a
new notion of
compacity.

Strongly continuous
functions

Perspectives

Surreal operations : Addition,
example

x = ω + 3
4 =

[
N, ω, ω + 1

2

∣∣∣ ω + 1
]

y = −7
2 = [−4 | 0,−1,−2,−3]

Then


Lx + y = {−3.5,−2.5,−1.5,−0.5, 0.5, . . .}
x + Ly = {ω − 13

4 }
Rx + y = {ω − 5

2}
x + Ry = {ω + 3

4 , ω −
1
4 , ω −

5
4 , ω −

9
4}

x + y =
[
ω − 13

4

∣∣∣ ω − 5
2

]
x + y = [(+)ω −−−−+ + | (+)ω −−−+]

Basically we have to choose between
(+)ω −−−−+ + + and (+)ω −−−+−

Simplicity property :
x + y = (+)ω −−−+− = ω − 11

4

Surreal operations : Addition,
example

x = ω + 3
4 =

[
N, ω, ω + 1

2

∣∣∣ ω + 1
]

y = −7
2 = [−4 | 0,−1,−2,−3]

Then


Lx + y = {−3.5,−2.5,−1.5,−0.5, 0.5, . . .}
x + Ly = {ω − 13

4 }
Rx + y = {ω − 5

2}
x + Ry = {ω + 3

4 , ω −
1
4 , ω −

5
4 , ω −

9
4}

x + y =
[
ω − 13

4

∣∣∣ ω − 5
2

]
x + y = [(+)ω −−−−+ + | (+)ω −−−+]

Basically we have to choose between
(+)ω −−−−+ + + and (+)ω −−−+−

Simplicity property :
x + y = (+)ω −−−+− = ω − 11

4

20
19

-1
1-

26

Surreal numbers
Surreal Numbers

Definitions and operations
Surreal operations : Addition, example

Exemple de +



Surreal
numbers

Quentin
Guilmant

Introduction :
Numbers

Surreal
Numbers
Definitions and
operations

Sub-structure and
Hahn series

Gaps in the surreal
fields.

Computations
with surreal
numbers,
existing
methods
Cauchy completion

Computable Analysis
over surreal fields

Problem of
integration
Motivation : Analog
computing

Some previous tries

Handle the gaps, a
new notion of
compacity.

Strongly continuous
functions

Perspectives

Surreal operations : Multiplication

Definition

x × y =
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• Multiplication has the uniformity property
• (No<,+,×) is field.
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Surreal operations : Inverse

Proposition
Let x = [Lx | Rx ] in the canonical representation. Then 1

x is
defined as follows.
• 〈〉 = 0
• For y0, . . . , yn ∈ (Lx ∪ Rx ) \ {0},

〈y0, . . . , yn〉 = 1− (x − yn) 〈y0, . . . , yn−1〉
yn{

L1/x = {〈y0, . . . , yn〉 | | { i | yi ∈ Lx} | ∈ 2N}
R1/x = {〈y0, . . . , yn〉 | | { i | yi ∈ Lx} | ∈ 2N + 1}

Then 1
x =

[
L1/x

∣∣∣ R1/x
]

And the definition has the uniformity property.
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x is
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yn{

L1/x = {〈y0, . . . , yn〉 | | { i | yi ∈ Lx} | ∈ 2N}
R1/x = {〈y0, . . . , yn〉 | | { i | yi ∈ Lx} | ∈ 2N + 1}

Then 1
x =

[
L1/x

∣∣∣ R1/x
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And the definition has the uniformity property.
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Exponential function

Theorem (Gonshor [6])
It is possible to extend the function exp : R→ R to
exp : No→ No such that it has an inductive definition with
the uniformity property.

Proposition (Van den Dries, Ehrlich [8])
There is a hierarchy of elementary extensions R ⊆ No<λ ⊆ No
(for λ an ε-number) for the language of ordered fields together
with exp (and restricted analytic functions).

Warning

sin and cos do not admit extension to surreal number.
You would need to give sense to exp(iω).
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• Even the exponential function has a nice definition ! In particular it is
inductive with uniform property.
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• Even the exponential function has a nice definition ! In particular it is
inductive with uniform property.

• The definition of the exponential function is very satisfying, it has all
the suitable first order properties of the exponential function.
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Definitions and operations
Exponential function

• Even the exponential function has a nice definition ! In particular it is
inductive with uniform property.

• The definition of the exponential function is very satisfying, it has all
the suitable first order properties of the exponential function.

• What does it mean to orbit ω times around the origin ? Even worth :√
ω times ?
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Surreal numbers of bounded length

Notation
No<α = {x ∈ No | length(x) < α}

Proposition (Van den Dries and Ehrlich [8], corollaries 3.1,
4.4 and 4.9)
No<λ is
• an additive group iff λ is additive (i.e has form λ = ωα for
some ordinal α)

• is a ring iff λ is multiplicative (i.e has form λ = ωω
α for

some ordinal α)
• is a field iff λ is an ε-number (i.e satisfies λ = ωλ)

Surreal numbers of bounded length

Notation
No<α = {x ∈ No | length(x) < α}

Proposition (Van den Dries and Ehrlich [8], corollaries 3.1,
4.4 and 4.9)
No<λ is

• an additive group iff λ is additive (i.e has form λ = ωα for
some ordinal α)

• is a ring iff λ is multiplicative (i.e has form λ = ωω
α for

some ordinal α)
• is a field iff λ is an ε-number (i.e satisfies λ = ωλ)
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Sub-structure and Hahn series
Surreal numbers of bounded length

• So far we were interested in the whole class of surreal numbers. But
there are sub-structures that may be interesteing. Typically, what
about the set of surreal numbers of bounded length (or birthday).

• The very first question is, what are the conditions on α so that we
have usual algebraic structures.



Surreal
numbers

Quentin
Guilmant

Introduction :
Numbers

Surreal
Numbers
Definitions and
operations

Sub-structure and
Hahn series

Gaps in the surreal
fields.

Computations
with surreal
numbers,
existing
methods
Cauchy completion

Computable Analysis
over surreal fields

Problem of
integration
Motivation : Analog
computing

Some previous tries

Handle the gaps, a
new notion of
compacity.

Strongly continuous
functions

Perspectives

Surreal numbers of bounded length

Notation
No<α = {x ∈ No | length(x) < α}

Proposition (Van den Dries and Ehrlich [8], corollaries 3.1,
4.4 and 4.9)
No<λ is
• an additive group iff λ is additive (i.e has form λ = ωα for
some ordinal α)

• is a ring iff λ is multiplicative (i.e has form λ = ωω
α for

some ordinal α)
• is a field iff λ is an ε-number (i.e satisfies λ = ωλ)

Surreal numbers of bounded length

Notation
No<α = {x ∈ No | length(x) < α}

Proposition (Van den Dries and Ehrlich [8], corollaries 3.1,
4.4 and 4.9)
No<λ is

• an additive group iff λ is additive (i.e has form λ = ωα for
some ordinal α)

• is a ring iff λ is multiplicative (i.e has form λ = ωω
α for

some ordinal α)
• is a field iff λ is an ε-number (i.e satisfies λ = ωλ)20

19
-1

1-
26

Surreal numbers
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Sub-structure and Hahn series
Surreal numbers of bounded length

• So far we were interested in the whole class of surreal numbers. But
there are sub-structures that may be interesteing. Typically, what
about the set of surreal numbers of bounded length (or birthday).

• The very first question is, what are the conditions on α so that we
have usual algebraic structures.

• The answer is very intuitive : it is basically the desired property applied
to the ordinal that bounds the length.
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Interlude : Hahn series

Definition (Hahn series field)
Let K be a field and Γ an Abelian ordered group. The
associated formal power series field denoted K((tΓ)) is{ ∑
γ∈Γ

rγtγ
∣∣∣∣∣ rγ ∈ K, supp(x) := {γ | rγ 6= 0} is well ordered

}

This fields admits a natural notion of order, the lexicographical
order.

Theorem (Gonshor, [6])
Every x in No can be written in a unique way as x =

∑
i<α

riωai

with ri ∈ R and the ai ∈ No decreasing and No ' R((tNo))
(ordered fields isomorphism).

Interlude : Hahn series

Definition (Hahn series field)
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Sub-structure and Hahn series
Interlude : Hahn series

So far we have seen the the two first definition of the surreal numbers.
What about the third one ?

• We first define Hahn series.
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• This is an ordered field
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Interlude : Hahn series

So far we have seen the the two first definition of the surreal numbers.
What about the third one ?

• We first define Hahn series.

• This is an ordered field

• We have a very good isomorphism that links the sign expansions and
the Hahn series. Moreover the the sign expansion can be "easily" de-
duced from the Hahn series. Finally the Hahn series of ordinal number
seen as surreal numbers are their normal forms as usual ordinals.
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Theorem (Alling [1], Van den Dries, Ehrlich [8])
Let K be real-closed and Γ divisible. Let λ be an ε-number.
Then
KΓ
λ :=

{
x ∈ K((tΓ))

∣∣∣ supp xhas order type lower than λ
}

is a real-closed field.

Theorem (Van den Dries, Ehrlich [8])
If λ is an ε-number then

No<λ '
⋃
µ<λ

RNo<µ
λ

where µ ranges over multiplicative ordinals. If λ is a regular
cardinal then No<λ ' RNo<λ

λ

Sub-fields from Hahn series
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Sub-structure and Hahn series
Sub-fields from Hahn series

• Alling worked with cardinal numbers as length for the sums but with
K a real-closed field, Ehrlich and Van den Dries with R but with
ordinal length.

• This second theorem enable us to make a link between the two types
of field we have seen so far.
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K a real-closed field, Ehrlich and Van den Dries with R but with
ordinal length.

• This second theorem enable us to make a link between the two types
of field we have seen so far.
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Les deux types de gap
Please notice that there are only non trivial gaps. That is because if there
were a non-trivial gap, one of the set L or R involved in the gap would
actually be a proper class.
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K is Cauchy-complete iff it has no non-trivial Cauchy gap.
Rµλ := RNo<µ

λ has a simple Cauchy-completion.
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Cauchy cuts and Cauchy completion

• If we speak about Cauchy gap, it is because we can avoid them. In
particular we can have a complete field. The difference with a real
case being that the sequence must have length the degree of the field,
which is the coinitiality of the set of positive elements of the field.
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Cauchy cuts and Cauchy completion

• If we speak about Cauchy gap, it is because we can avoid them. In
particular we can have a complete field. The difference with a real
case being that the sequence must have length the degree of the field,
which is the coinitiality of the set of positive elements of the field.

• Def : Coinitial, Cofinal, Coinitiality, Cofinality.

• With Hahn series, we have a nice Cauchy completion
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Cauchy cuts and Cauchy completion

• If we speak about Cauchy gap, it is because we can avoid them. In
particular we can have a complete field. The difference with a real
case being that the sequence must have length the degree of the field,
which is the coinitiality of the set of positive elements of the field.

• Def : Coinitial, Cofinal, Coinitiality, Cofinality.

• With Hahn series, we have a nice Cauchy completion

• The remaining gaps are exactly what we expect. In particular, in type
1 gaps we just get rid of the case where the (ai)s are coinitial.
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Motivation for Cauchy-completion

Cauchy-completion is less powerful than Dedekind-completion
(no non-trivial gap remaining).

Many gaps remain in R̃µλ so
why a Cauchy-completion ?
• Cauchy-sequences (possibly with larger length) will
converge (needed for some powerful theorem in analysis)

• Computable analysis, Cauchy representations
• Better generalization of R
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Cauchy completion
Motivation for Cauchy-completion

Cauchy-completion and Dedekind-completion are different. It is because
the field is not Archimedean. Dedekind-completion is much more powerful.
So we have to give a motivation for the use of Cauchy-completion. Voir
slide : bonne propriétés
Dedekind completion would introduce new elements that are even not
surreal number (such as ∞). Of course you may say there are surreal
numbers that are not the considered field and that would be able to play
the role of ∞. But adding them create even more gaps because you want
to get a field at the end !
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• Rµλ admits a notation over {0, 1}<λ. It is dense in R̃µλ.

• Intervals of R̃µλ with bounds in Rµλ have a notation.

• Give R̃µλ a structure of an effective (topological) space.
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Interlude : Effective space

Definition (λ-effective space)
A λ-effective space is a tripletM = (M, σ, ν) with M a set,
σ ⊆ 2M a collection of subsets of M such that

x = y ⇔ {A ∈ σ | x ∈ A} = {A ∈ σ | y ∈ A}
and ν :⊆ {0, 1}<λ → σ is a notation.

Definition
• The standard topology τM is the topology induced by σ
• The standard representation δM :⊆ {0, 1}λ → M is given
by
δM(p) = x ⇔ {A ∈ σ | x ∈ A} = {ν(w) | ι(w) < p}
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Gaps are the problem. Strongly compact sets must have
a Lebesgue-Borel-like property but must be blind to gaps.

Definition ((λ, µ)-strongly-compact set)
If X is a set of open intervals of R̃µλ, let B(X ) the set of the
bounds of theses intervals. Now, a subset X ⊆ R̃µλ is said
(λ, µ)-strongly-compact if for any covering X of X by open
intervals with no non-trivial partition L ∪ R = B(X ) such that
L < R and [L | R] is a gap in R̃µλ, there is a finite sub-covering.
In other words : Every no-gap-showing covering admits a finite
sub-covering.
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Definition
A function f : R̃µλ → R̃µλ is said to be
(λ, µ)-strongly-continuous if it is continuous and for any
non-trivial gap G = [L | R] of R̃µλ either f has a limit in G that
is reached on any neighborhood of G or there is a non-trivial
gap H = [A | B] such that for any neighborhood J of H there
is a neighborhood I of G such that

x ∈ I =⇒ f (x) ∈ J
f (I) ∩ ]H ; sup J [ 6= ∅ and f (I) ∩ ] inf J ;H [ 6= ∅
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Proposition (Intermediate value theorem)
Let f : R̃µλ → R̃µλ be (λ, µ)-strongly-continuous . Assume
f (a) ≤ f (b). Then for all
y ∈ [ min(f (a), f (b)) ; max(f (a), f (b)) ] there is a ≤ c ≤ b such
that f (c) = y.

Theorem (Extreme Value Theorem)
Let f : R̃µλ → R̃µλ be a (λ, µ)-strongly-continuous function. Let
X ⊆ R̃µλ be a (λ, µ)-strongly-compact set, then f (X ) is also
(λ, µ)-strongly-compact . In particular, it has a maximum and a
minimum on X.
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