Ramsey-like theorems and moduli of computation

Ludovic PATEY
Joint work with Peter Cholak

November 27, 2019

Consider mathematical problems

Intermediate value theorem
For every continuous function f over an interval $[a, b]$ such that $f(a) \cdot f(b)<0$, there is a real $x \in[a, b]$ such that $f(x)=0$.

König's lemma

Every infinite, finitely branching tree admits an infinite path.

What sets can problems encode?

Fix a problem P.
A set S is P-encodable if there is an instance of P such that every solution computes S.

Every computable set is P-encodable.

What sets can problems encode?

Defi (Strong avoidance of 1 cone)

For every Z, every $C \not_{T} Z$ and every instance X, there is a solution Y such that $C \not \mathbb{Z}_{T} Z \oplus Y$.

What sets can problems encode?

Defi (Strong avoidance of 1 cone)

For every Z, every $C \not_{T} Z$ and every instance X, there is a solution Y such that $C \not \mathbb{L}_{T} Z \oplus Y$.

What functions can problems dominate?

Fix a problem P .
A function $f: \omega \rightarrow \omega$ is P -dominated if there is an instance of P such that every solution computes a function dominating f

What functions can problems dominate?

A function f is hyperimmune if it is not dominated by any computable function.

Defi (Strong preservation of 1 hyperimmunity)

For every Z, every Z-hyperimmune function f and every instance X, there is a solution Y such that f is
$Z \oplus Y$-hyperimmune.

Thm (Downey, Greenberg, Harrison-Trainor, P, Turetsky)

Strong avoidance of 1 cone if and strong preservation of 1 hyperimmunity are equivalent.

Not equivalent in the unrelativized version!

- Fix a non-zero set Y of hyperimmune-free degree. Let $\mathrm{P}_{1}: Y \mapsto\{Y\}$.
- Fix a hyperimmune f below a Δ_{1}^{1}-random.

Let $\mathrm{P}_{2}: f \mapsto\{g: g \geq f\}$.

What sets can encode Ramsey's theorem?

Ramsey's theorem

$[X]^{n}$ is the set of unordered n-tuples of elements of X
A k-coloring of $[X]^{n}$ is a map $f:[X]^{n} \rightarrow k$
A set $H \subseteq X$ is homogeneous for f if $\left|f\left([H]^{n}\right)\right|=1$.
$\mathrm{RT}{ }^{n} \quad$ Every k-coloring of $[\mathbb{N}]^{n}$ admits an infinite homogeneous set.

Pigeonhole principle

$$
\begin{aligned}
& \text { RT }{ }^{1} \text { Every } k \text {-partition of } \mathbb{N} \text { admits } \\
& \text { an infinite part. }
\end{aligned}
$$

Ramsey's theorem for pairs

RT_{k}^{2}

Every k-coloring of the infinite clique admits an infinite monochromatic subclique.

Thm (Jockusch)

Every function is RT_{2}^{2}-dominated.

Given $g: \omega \rightarrow \omega$, an interval $[x, y]$ is g-large if $y \geq g(x)$. Otherwise it is g-small.

$$
f(x, y)= \begin{cases}1 & \text { if }[x, y] \text { is } g \text {-large } \\ 0 & \text { otherwise }\end{cases}
$$

A function f is a modulus of a set S if every function dominating f computes S.

Thm (Groszek and Slaman)

The sets admitting a modulus are the Δ_{1}^{1} sets.

Thm (Jockusch)

Every Δ_{1}^{1} set is RT_{2}^{2}-encodable.

A set S is computably encodable if for every infinite set X, there is an infinite subset $Y \subseteq X$ computing S.

Thm (Solovay)

The computably encodable sets are the Δ_{1}^{1} sets.

Thm (Jockusch)

A set is RT_{k}^{n}-encodable for some $n \geq 2$ iff it is Δ_{1}^{1}.

The encodability power of RT_{k}^{n} comes from the

sparsity

of its homogeneous sets.

Thm (Dzhafarov and Jockusch)

The RT_{2}^{1}-encodable sets are the computable sets.

$$
\begin{array}{rrrrr}
0 & 1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 & 9 \\
10 & 11 & 12 & 13 & 14 \\
15 & 16 & 17 & 18 & 19 \\
20 & 21 & 22 & 23 & 24 \\
25 & 26 & 27 & 28 & \ldots .
\end{array}
$$

Sparsity of red implies non-sparsity of blue and conversely.

Ramsey's theorem

Over n-tuples

Using k colors

Ramsey's theorem

Over n-tuples

Thm (Wang)

A set is $\mathrm{RT}_{k, \ell}^{n}$-encodable iff it is computable for large ℓ
(whenever ℓ is at least the nth Schröder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is $\mathrm{RT}_{k, \ell}^{n}$-encodable iff it is Δ_{1}^{1} for small ℓ
(whenever $\ell<2^{n-1}$)

Thm (Cholak, P.)

Every function is $\mathrm{RT}_{k, \ell}^{n}$-dominated for $\ell<2^{n-1}$.

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left\langle\left[x_{1}, x_{2}\right] \text { g-large?, } \ldots,\left[x_{n-1}, x_{n}\right] \text { g-large? }\right\rangle
$$

Thm (Cholak, P.)

If a set is $\mathrm{RT}_{k, \ell}^{n}$-encodable for $\ell \geq 2^{n-1}$ then it is arithmetical.

Catalan numbers

C_{n} is the number of trails of length $2 n$.

$1,1,2,5,14,42,132,429,1430,4862,16796,58786, \ldots$

Left-c.e. function

Defi

A function $g: \omega \rightarrow \omega$ is left-c.e. if there is a uniformly computable sequence of functions $g_{0} \leq g_{1} \leq \ldots$ limiting to g.

Given x_{0}, \ldots, x_{n-1}, define the graph of size n by

- if $b=a+1$ and $\left[x_{a}, x_{a+1}\right]$ is g-large; or
- if $b>a+1$ and $\left[x_{a}, x_{a+1}\right]$ is $g_{x_{b}}$-small

Defi

A largeness graph is a pair $(\{0, \ldots, n-1\}, E)$ such that
(a) If $\{i, i+1\} \in E$, then for every $j>i+1,\{i, j\} \notin E$
(b) If $i<j<n,\{i, i+1\} \notin E$ and $\{j, j+1\} \in E$, then $\{i, j+1\} \in E$
(c) If $i+1<j<n-1$ and $\{i, j\} \in E$, then $\{i, j+1\} \in E$
(d) If $i+1<j<k<n$ and $\{i, j\} \notin E$ but $\{i, k\} \in E$, then $\{j-1, k\} \in E$

Largeness graphs of size 4

(2)

(0) (1) (2) (3)

Counting largeness graphs

A largeness graph $\mathcal{G}=(\{0, \ldots, n-1\}, E)$ is packed if for every $i<n-2,\{i, i+1\} \notin E$.

- $L_{n}=$ number of largeness graphs of size n
- $P_{n}=$ number of packed largeness graphs of size n

$$
L_{0}=1 \quad \text { and } \quad L_{n+1}=\sum_{i=0}^{n} P_{i+1} L_{n-i}
$$

Counting packed largeness graphs

A largeness graph $\mathcal{G}=(\{0, \ldots, n-1\}, E)$ of size $n \geq 2$ is normal if $\{n-2, n-1\} \in E$.

Thm (Cholak, P.)

The following are in one-to-one correspondance:
(a) packed largeness graphs of size n
(b) normal largeness graphs of size n
(c) largeness graphs of size $n-1$

Thm (Cholak, P.)

Every left-c.e. function is $R T_{k, e^{-}}^{n}$ dominated for $\ell<C_{n}$.

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\text { the largeness graph of } g
$$

Thm (Cholak, P.)

The $\mathrm{RT}_{k, \ell}^{n}$-encodable sets for $\ell \geq C_{n}$ are the computable sets.

$\mathrm{RT}_{k, \ell}^{n}$-encodable sets

Ramsey-like theorems

Erdős-Moser theorem

Fix $f:[\omega]^{2} \rightarrow 2$.
A set H is transitive if for every $a<b<c \in H$, such that $f(a, b)=f(b, c)$ then $f(a, b)=f(a, c)$.

EM Every 2-coloring of $[\mathbb{N}]^{2}$ admits an infinite transitive set.

Thm (Jockusch)

Every function is RT_{2}^{2}-dominated.

Thm (P)

EM admits strong avoidance of 1 cone.

> Is there a maximal weakening of RT_{k}^{n} which admits strong avoidance of 1 cone?

Ramsey-like problems

Fix a formal coloring $\mathrm{f}:[\omega]^{n} \rightarrow k$ and variables $\mathrm{x}_{0}<\mathrm{x}_{1}<\ldots$

An RT_{k}^{n}-pattern P is a finite conjunction of formulas

$$
\mathrm{f}\left(\mathrm{x}_{i_{1}}, \ldots \mathrm{x}_{i_{n}}\right)=v_{1} \wedge \cdots \wedge \mathrm{f}\left(\mathrm{x}_{j_{1}}, \ldots \mathrm{x}_{j_{n}}\right)=v_{s}
$$

with $v_{1}, \ldots, v_{s}<k$

Given a coloring $f:[\omega]^{n} \rightarrow k$, a set $H \subseteq \omega f$-avoids an RT_{k}^{n}-pattern P if $(F, f) \not \models P$ for every finite set $F \subseteq H$.

Ramsey-like problems

Deff

Given a set V of $R T_{k}^{n}$-patterns, $\mathrm{RT}_{k}^{n}(V)$ is the problem whose instances are colorings $f:[\omega]^{n} \rightarrow k$ and solutions are sets f-avoiding every pattern in V.

In particular, $\mathrm{RT}_{k}^{n}, \mathrm{RT}_{k, \ell}^{n}$ and EM are Ramsey-like problems.

Thm (P)

For every $n, k \geq 1$, there is a strongest Ramsey-like problem $\mathrm{RT}_{k}^{n}(V)$ which admits strong avoidance of 1 cone.

Ramsey-like problems

Given problems P and Q , let $\mathrm{P} \leq i d \mathrm{Q}$ if $\operatorname{dom} \mathrm{P} \subseteq \operatorname{dom} \mathrm{Q}$, and for every $X \in \operatorname{dom}(P), Q(X) \subseteq P(X)$.

Thm (P.)

There is a Ramsey-like problem SCA-RT ${ }_{k}^{n}$ such that for every set V of RT_{k}^{n}-patterns, $\mathrm{RT}_{k}^{n}(V)$ admits strong avoidance of 1 cone iff $\mathrm{RT}_{k}^{n}(V) \leq_{i d} \mathrm{SCA}^{\mathrm{R}} \mathrm{T}_{k}^{n}$.

To decide strong avoidance for $\mathrm{RT}_{k}^{n}(V)$, simply check that

$$
V V \rightarrow \bigvee V_{\mathrm{SCA}^{-R T_{k}^{n}}}
$$

is a tautology.

Example: SCA-RT ${ }_{k}^{2}$

Defi (SCA-RT ${ }_{k}^{2}$)

For every coloring $f:[\omega]^{2} \rightarrow k$, there are two colors $s, \ell<k$ and an infinite set $H \subseteq \omega$ such that

- $f[H]^{2} \subseteq\{s, \ell\}$
- $f(x, y)=f(y, z)=s$ iff $f(x, z)=s$ for every $x<y<z \in H$

It looks like over H, there is some function $g: \omega \rightarrow \omega$ such that

$$
f(x, y)= \begin{cases}\ell & \text { if }[x, y] \text { is g-large } \\ s & \text { otherwise }\end{cases}
$$

This analysis generalizes the following theorems:

- RT_{2}^{2} admits avoidance of 1 cone
- RT_{2}^{1} admits strong avoidance of 1 cone
(Dzhafarov and Jockusch)
- EM admits strong avoidance of 1 cone
- $\mathrm{RT}_{k, C_{n}}^{n}$ admits strong avoidance of 1 cone (Cholak and P.)
- FS^{n} admits strong avoidance of 1 cone
- ADS does not admit strong avoidance of 1 cone

Conclusion

Ramsey-type problems compute through sparsity.

The computational properties of Ramsey-type problems are consequences of their combinatorics.

The analysis of Ramsey-like theorems is induced by the exact bound analysis of the thin set theeorems.

References

目
Peter A. Cholak and Ludovic Patey.
Thin set theorems and cone avoidance.
To appear, 2019.
R Ludovic Patey.
Ramsey-like theorems and moduli of computation.
arXiv preprint arXiv:1901.04388, 2019.
To appear.
围 Matthew Harrison-Trainor Ludovic Patey Rod Downey, Noam Greenberg and Dan Turetsky.
Relationships between computability-theoretic properties of problems.
To appear, 2019.

