On the Decidability of Reachability in Linear Time-Invariant Systems

Nathanaël Fijalkow, Joël Ouaknine, Amaury Pouly, João Sousa-Pinto, James Worrell

Université de Paris, IRIF, CNRS

26 november 2019

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

State : $X = z \in \mathbb{R}$

Equation of motion :

$$mz'' = -kz - bz' + mg + u$$

Model with external input u(t)

State : $X = z \in \mathbb{R}$

Equation of motion :

$$mz'' = -kz - bz' + mg + u$$

Model with external input u(t)

State : $X = z \in \mathbb{R}$

Equation of motion :

$$mz'' = -kz - bz' + mg + u$$

 \rightarrow Affine but not first order

Model with external input u(t)

Model with external input u(t)

State : $X = z \in \mathbb{R}$

Equation of motion : mz'' = -kz - bz' + mg + u \rightarrow Affine but not first order

State : $X = (z, z', 1) \in \mathbb{R}^3$

Equation of motion : $\begin{bmatrix} z \\ z' \\ 1 \end{bmatrix}' = \begin{bmatrix} -\frac{k}{m}z - \frac{b}{m}z' + g + \frac{1}{m}u \\ 0 \end{bmatrix}$

Model with external input u(t) \rightarrow Linear time invariant system X' = AX + Bu

with some constraints on *u*.

State : $X = z \in \mathbb{R}$

Equation of motion : mz'' = -kz - bz' + mg + u \rightarrow Affine but not first order

State : $X = (z, z', 1) \in \mathbb{R}^3$

Equation of motion : $\begin{bmatrix} z \\ z' \\ 1 \end{bmatrix}' = \begin{bmatrix} -\frac{k}{m}z - \frac{b}{m}z' + g + \frac{1}{m}u \end{bmatrix}$

Linear dynamical systems

Discrete case

$$x(n+1) = Ax(n)$$

- biology,
- software verification,
- probabilistic model checking,
- combinatorics,

Continuous case

$$x'(t) = Ax(t)$$

- biology,
- physics,
- probabilistic model checking,
- electrical circuits,

- **Typical questions**
 - reachability
 - safety

. . . .

Linear dynamical systems

Discrete case

$$x(n+1) = Ax(n) + \frac{Bu(n)}{Bu(n)}$$

- biology,
- software verification,
- probabilistic model checking,
- combinatorics,

Continuous case

$$x'(t) = Ax(t) + \frac{Bu(t)}{Bu(t)}$$

- biology,
- physics,
- probabilistic model checking,
- electrical circuits,

Typical questions

- reachability
- safety

. . . .

controllability

Linear dynamical systems

Discrete case

$$x(n+1) = Ax(n) + \frac{Bu(n)}{Bu(n)}$$

- biology,
- software verification,
- probabilistic model checking,
- combinatorics,

Continuous case

$$x'(t) = Ax(t) + \frac{Bu(t)}{Bu(t)}$$

- biology,
- physics,
- probabilistic model checking,
- electrical circuits,

Typical questions

- reachability
- safety

. . . .

controllability

- optimal control
- feedback control

LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^d$,

decide if $\exists T \in \mathbb{N}, u_0, \ldots, u_{T-1} \in U$ such that $x_T = t$ where

$$x_0 = s,$$
 $x_{n+1} = Ax_n + u_n.$

ŝ

LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- ▶ a set of controls $U \subseteq \mathbb{R}^d$,

$$x_0 = s,$$
 $x_{n+1} = Ax_n + u_n.$

$$x_0 = s$$

LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- ▶ a set of controls $U \subseteq \mathbb{R}^d$,

$$x_0 = s,$$
 $x_{n+1} = Ax_n + u_n.$

LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- ▶ a set of controls $U \subseteq \mathbb{R}^d$,

$$x_0 = s,$$
 $x_{n+1} = Ax_n + u_n.$

LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- ▶ a set of controls $U \subseteq \mathbb{R}^d$,

$$x_0 = s,$$
 $x_{n+1} = Ax_n + u_n.$

LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- ▶ a set of controls $U \subseteq \mathbb{R}^d$,

$$x_0 = s,$$
 $x_{n+1} = Ax_n + u_n.$

LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- ▶ a set of controls $U \subseteq \mathbb{R}^d$,

$$x_0 = s,$$
 $x_{n+1} = Ax_n + u_n.$

LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- ▶ a set of controls $U \subseteq \mathbb{R}^d$,

$$x_0 = s,$$
 $x_{n+1} = Ax_n + u_n.$

LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- ▶ a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^d$,

$$x_0 = s, \qquad x_{n+1} = Ax_n + u_n.$$

LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^d$,

decide if $\exists T \in \mathbb{N}, u_0, \ldots, u_{T-1} \in U$ such that $x_T = t$ where

$$x_0 = s, \qquad x_{n+1} = Ax_n + u_n.$$

Theorem (Lipton and Kannan, 1986)

LTI-REACHABILITY is decidable if U is an affine subspace of \mathbb{R}^d .

LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^d$,

decide if $\exists T \in \mathbb{N}, u_0, \ldots, u_{T-1} \in U$ such that $x_T = t$ where

$$x_0 = s, \qquad x_{n+1} = Ax_n + u_n.$$

Theorem (Lipton and Kannan, 1986)

LTI-REACHABILITY is decidable if U is an affine subspace of \mathbb{R}^d .

Almost no exact results for other classes of U

LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^d$,

decide if $\exists T \in \mathbb{N}, u_0, \ldots, u_{T-1} \in U$ such that $x_T = t$ where

$$x_0 = s, \qquad x_{n+1} = Ax_n + u_n.$$

Theorem (Lipton and Kannan, 1986)

LTI-REACHABILITY is decidable if U is an affine subspace of \mathbb{R}^d .

Almost no exact results for other classes of U in particular when U is bounded (which is the most natural case).

Study the impact of the control set on the hardness of reachability

Study the impact of the control set on the hardness of reachability

Theorem

LTI-REACHABILITY **is**

undecidable if *U* is a finite union of affine subspaces.

Study the impact of the control set on the hardness of reachability

Theorem

LTI-REACHABILITY **is**

- **undecidable** if *U* is a finite union of affine subspaces.
- Skolem-hard if $U = \{0\} \cup V$ where V is an affine subspace

Given $s \in \mathbb{Q}^d$ and $A \in \mathbb{Q}^{d \times d}$:

Skolem problem : decide if $\exists T \in \mathbb{N}$ such that $(A^T s)_1 = 0$,

Study the impact of the control set on the hardness of reachability

Theorem

LTI-REACHABILITY **is**

- **undecidable** if *U* is a finite union of affine subspaces.
- Skolem-hard if $U = \{0\} \cup V$ where V is an affine subspace
- Positivity-hard if U is a convex polytope

Given $s \in \mathbb{Q}^d$ and $A \in \mathbb{Q}^{d \times d}$:

- Skolem problem : decide if $\exists T \in \mathbb{N}$ such that $(A^T s)_1 = 0$,
- Positivity problem : decide if $(A^T s)_1 \ge 0$ for all $T \in \mathbb{N}$.

Study the impact of the control set on the hardness of reachability

Theorem

LTI-REACHABILITY **is**

- undecidable if U is a finite union of affine subspaces.
- Skolem-hard if $U = \{0\} \cup V$ where V is an affine subspace
- Positivity-hard if U is a convex polytope

Given $s \in \mathbb{Q}^d$ and $A \in \mathbb{Q}^{d \times d}$:

- Skolem problem : decide if $\exists T \in \mathbb{N}$ such that $(A^T s)_1 = 0$,
- Positivity problem : decide if $(A^T s)_1 \ge 0$ for all $T \in \mathbb{N}$.

Why is this a hardness result?

Decidability of Skolen and Positivity has been open for 70 years!

Study the impact of the control set on the hardness of reachability

Theorem

LTI-REACHABILITY **is**

- undecidable if U is a finite union of affine subspaces.
- Skolem-hard if $U = \{0\} \cup V$ where V is an affine subspace
- Positivity-hard if U is a convex polytope

Given $s \in \mathbb{Q}^d$ and $A \in \mathbb{Q}^{d \times d}$:

- Skolem problem : decide if $\exists T \in \mathbb{N}$ such that $(A^T s)_1 = 0$,
- Positivity problem : decide if $(A^T s)_1 \ge 0$ for all $T \in \mathbb{N}$.

Why is this a hardness result?

Decidability of Skolen and Positivity has been open for 70 years!

Since we cannot solve Skolem/Positivity, we need some strong assumptions for decidability.

A LTI system (s, A, t, U) is simple if s = 0 and

A LTI system (s, A, t, U) is simple if s = 0 and

► *U* is a bounded polytope that contains 0 in its (relative) interior,

A LTI system (s, A, t, U) is simple if s = 0 and

- ► U is a bounded polytope that contains 0 in its (relative) interior,
- the spectral radius of A is less than 1 (stability),

Assumptions imply that the reachable set is an open convex bounded set,

A LTI system (s, A, t, U) is simple if s = 0 and

- ► *U* is a bounded polytope that contains 0 in its (relative) interior,
- the spectral radius of A is less than 1 (stability),

A LTI system (s, A, t, U) is simple if s = 0 and

- ► *U* is a bounded polytope that contains 0 in its (relative) interior,
- the spectral radius of A is less than 1 (stability),
- some positive power of A has exclusively real spectrum.

A LTI system (s, A, t, U) is simple if s = 0 and

- ► *U* is a bounded polytope that contains 0 in its (relative) interior,
- the spectral radius of A is less than 1 (stability),
- some positive power of *A* has exclusively real spectrum.

Theorem

LTI-REACHABILITY is decidable for simple systems.

A LTI system (s, A, t, U) is simple if s = 0 and

- ► *U* is a bounded polytope that contains 0 in its (relative) interior,
- the spectral radius of A is less than 1 (stability),
- some positive power of *A* has exclusively real spectrum.

Theorem

LTI-REACHABILITY is decidable for simple systems.

Remark : in fact we can decide reachability to a convex polytope Q.

Why is this problem hard

The reachable set $A^*(U)$ can have **infinitely** many faces.

The reachable set $A^*(U)$ can have **faces of lower dimension** : the "top" extreme point does not belong to any facet.

Approach : two semi-decision procedures

- reachability : under-approximations of the reachable set
- non-reachability : separating hyperplanes

Approach : two semi-decision procedures

- reachability : under-approximations of the reachable set
- non-reachability : separating hyperplanes

Approach : two semi-decision procedures

- reachability : under-approximations of the reachable set
- non-reachability : separating hyperplanes

Further difficulty : a separating hyperplane may not be supported by a facet of either $A^*(U)$ or Q.

Even more difficulty : $B^*(V)$ has two extreme points that do not belong to any facet and have rational coordinates, but whose (unique) separating hyperplane requires the use of algebraic irrationals

Even more difficulty : $B^*(V)$ has two extreme points that do not belong to any facet and have rational coordinates, but whose (unique) separating hyperplane requires the use of algebraic irrationals

Theorem (Non-reachable instances)

There is a separating hyperplane with algebraic coefficients.

Exact reachability of $x_{n+1} = Ax_n + u_n$:

Exact reachability of $x_{n+1} = Ax_n + u_n$:

decidability crucially depends on the shape of the control set

Exact reachability of $x_{n+1} = Ax_n + u_n$:

- decidability crucially depends on the shape of the control set
- even with convex bounded inputs, the problem is very hard (Skolem/Positivity, open for 70 years)

Exact reachability of $x_{n+1} = Ax_n + u_n$:

- decidability crucially depends on the shape of the control set
- even with convex bounded inputs, the problem is very hard (Skolem/Positivity, open for 70 years)
- we can recover decidability using strong spectral assumptions

Exact reachability of $x_{n+1} = Ax_n + u_n$:

- decidability crucially depends on the shape of the control set
- even with convex bounded inputs, the problem is very hard (Skolem/Positivity, open for 70 years)
- we can recover decidability using strong spectral assumptions

Open questions :

for convex bounded inputs, is it Positivity-easy?

Exact reachability of $x_{n+1} = Ax_n + u_n$:

- decidability crucially depends on the shape of the control set
- even with convex bounded inputs, the problem is very hard (Skolem/Positivity, open for 70 years)
- we can recover decidability using strong spectral assumptions

Open questions :

- for convex bounded inputs, is it Positivity-easy?
- weaken spectral assumptions?

Exact reachability of $x_{n+1} = Ax_n + u_n$:

- decidability crucially depends on the shape of the control set
- even with convex bounded inputs, the problem is very hard (Skolem/Positivity, open for 70 years)
- we can recover decidability using strong spectral assumptions

Open questions :

for convex bounded inputs, is it Positivity-easy?

0

weaken spectral assumptions ? Minimal difficult example :

$$A = \frac{1}{2} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \qquad U = [0, 1] \times \{0\}.$$

Decidability of
$$t \leq \sum_{n=0}^{\infty} \max(0, 2^{-n} \cos(n\theta))$$
 unknown.

Exact reachability of $x_{n+1} = Ax_n + u_n$:

- decidability crucially depends on the shape of the control set
- even with convex bounded inputs, the problem is very hard (Skolem/Positivity, open for 70 years)
- we can recover decidability using strong spectral assumptions

Open questions :

- for convex bounded inputs, is it Positivity-easy?
- weaken spectral assumptions ? Minimal difficult example :

$$A = \frac{1}{2} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \qquad U = [0, 1] \times \{0\}.$$

Decidability of
$$t \leq \sum_{n=0}^{\infty} \max(0, 2^{-n} \cos(n\theta))$$
 unknown.

Work in progress : continuous case x'(t) = Ax(t) + u(t) Details

Backup slides

Rinse and repeat :

$$x'(t) = Ax(t) + u(t)$$

where $u : \mathbb{R} \to U$ measurable.

Problems : reachability, safety, controllability, ...

Rinse and repeat :

$$x'(t) = Ax(t) + u(t)$$

where $u : \mathbb{R} \rightarrow U$ measurable.

Problems : reachability, safety, controllability, ...

It looks similar but

basic questions look harder :

$$x(t) = e^{At}x_0 + \int_0^t e^{-As}u(s)\,\mathrm{d}s.$$

Rinse and repeat :

$$x'(t) = Ax(t) + u(t)$$

where $u : \mathbb{R} \rightarrow U$ measurable.

Problems : reachability, safety, controllability, ...

It looks similar but

basic questions look harder :

$$x(t)=e^{At}x_0+\int_0^t e^{-As}u(s)\,\mathrm{d}s.$$

harder questions look easier :

linear + continuous = hard to encode problems

Continuous control : preliminary results

Theorem (Joint work with Mohan Dantam, preliminary)

Point-to-point continuous control is

- decidable in dimension 2,
- conditionally decidable with real eigen values,
- conditionally decidable in bounded time,
- Skolem/Positivity hard for point-to-set.

