On the Decidability of Reachability in Linear Time-Invariant Systems

Nathanaël Fijalkow, Joël Ouaknine, Amaury Pouly, João Sousa-Pinto, James Worrell

Université de Paris, IRIF, CNRS

26 november 2019

Example : mass-spring-damper system

State : $X=z \in \mathbb{R}$
Equation of motion :

$$
m z^{\prime \prime}=-k z-b z^{\prime}+m g+u
$$

Model with external input $u(t)$

Example : mass-spring-damper system

State : $X=z \in \mathbb{R}$
Equation of motion :

$$
m z^{\prime \prime}=-k z-b z^{\prime}+m g+u
$$

Model with external input $u(t)$

Example : mass-spring-damper system

State : $X=z \in \mathbb{R}$
Equation of motion :

$$
\begin{aligned}
& \quad m z^{\prime \prime}=-k z-b z^{\prime}+m g+u \\
& \rightarrow \text { Affine but not first order }
\end{aligned}
$$

Model with external input $u(t)$

Example : mass-spring-damper system

State : $X=z \in \mathbb{R}$
Equation of motion :

$$
\begin{aligned}
& \quad m z^{\prime \prime}=-k z-b z^{\prime}+m g+u \\
& \rightarrow \text { Affine but not first order }
\end{aligned}
$$

State : $X=\left(z, z^{\prime}, 1\right) \in \mathbb{R}^{3}$
Model with external input $u(t)$
Equation of motion :
$\left[\begin{array}{c}z \\ z^{\prime} \\ 1\end{array}\right]^{\prime}=\left[\begin{array}{c}z^{\prime} \\ -\frac{k}{m} z-\frac{b}{m} z^{\prime}+g+\frac{1}{m} u \\ 0\end{array}\right]$

Example : mass-spring-damper system

State : $X=z \in \mathbb{R}$
Equation of motion :

$$
\begin{aligned}
& \quad m z^{\prime \prime}=-k z-b z^{\prime}+m g+u \\
& \rightarrow \text { Affine but not first order }
\end{aligned}
$$

State : $X=\left(z, z^{\prime}, 1\right) \in \mathbb{R}^{3}$
Model with external input $u(t)$
\rightarrow Linear time invariant system

$$
X^{\prime}=A X+B u
$$

with some constraints on u.
Equation of motion :
$\left[\begin{array}{c}z \\ z^{\prime} \\ 1\end{array}\right]^{\prime}=\left[\begin{array}{c}z^{\prime} \\ -\frac{k}{m} z-\frac{b}{m} z^{\prime}+g+\frac{1}{m} u \\ 0\end{array}\right]$

Linear dynamical systems

Discrete case

$$
x(n+1)=A x(n)
$$

- biology,
- software verification,
- probabilistic model checking,
- combinatorics,
-

Typical questions

- reachability
- safety

Continuous case

$$
x^{\prime}(t)=A x(t)
$$

- biology,
- physics,
- probabilistic model checking,
- electrical circuits,
-

Linear dynamical systems

Discrete case

$$
x(n+1)=A x(n)+B u(n)
$$

- biology,
- software verification,
- probabilistic model checking,
- combinatorics, -

Typical questions

- reachability
- safety
- controllability

Linear dynamical systems

Discrete case

$$
x(n+1)=A x(n)+B u(n)
$$

- biology,
- software verification,
- probabilistic model checking,
- combinatorics, -

Typical questions

- reachability
- safety
- controllability

Continuous case

$$
x^{\prime}(t)=A x(t)+B u(t)
$$

- biology,
- physics,
- probabilistic model checking,
- electrical circuits,
-

The problem

LTI-REACHABILITY

- a source $s \in \mathbb{Q}^{d}$,
- a target $t \in \mathbb{Q}^{d}$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^{d}$, decide if $\exists T \in \mathbb{N}, u_{0}, \ldots, u_{T-1} \in U$ such that $x_{T}=t$ where

$$
x_{0}=s, \quad x_{n+1}=A x_{n}+u_{n} .
$$

The problem

LTI-REACHABILITY

- a source $s \in \mathbb{Q}^{d}$,
- a target $t \in \mathbb{Q}^{d}$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^{d}$, decide if $\exists T \in \mathbb{N}, u_{0}, \ldots, u_{T-1} \in U$ such that $x_{T}=t$ where

$$
x_{0}=s, \quad x_{n+1}=A x_{n}+u_{n}
$$

$$
x_{0} \stackrel{\bullet}{=} s
$$

The problem

LTI-REACHABILITY

- a source $s \in \mathbb{Q}^{d}$,
- a target $t \in \mathbb{Q}^{d}$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^{d}$, decide if $\exists T \in \mathbb{N}, u_{0}, \ldots, u_{T-1} \in U$ such that $x_{T}=t$ where

$$
x_{0}=s, \quad x_{n+1}=A x_{n}+u_{n}
$$

The problem

LTI-REACHABILITY

- a source $s \in \mathbb{Q}^{d}$,
- a target $t \in \mathbb{Q}^{d}$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^{d}$,
decide if $\exists T \in \mathbb{N}, u_{0}, \ldots, u_{T-1} \in U$ such that $x_{T}=t$ where

$$
x_{0}=s, \quad x_{n+1}=A x_{n}+u_{n} .
$$

The problem

LTI-REACHABILITY

- a source $s \in \mathbb{Q}^{d}$,
- a target $t \in \mathbb{Q}^{d}$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^{d}$, decide if $\exists T \in \mathbb{N}, u_{0}, \ldots, u_{T-1} \in U$ such that $x_{T}=t$ where

$$
x_{0}=s, \quad x_{n+1}=A x_{n}+u_{n} .
$$

The problem

LTI-REACHABILITY

- a source $s \in \mathbb{Q}^{d}$,
- a target $t \in \mathbb{Q}^{d}$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^{d}$, decide if $\exists T \in \mathbb{N}, u_{0}, \ldots, u_{T-1} \in U$ such that $x_{T}=t$ where

$$
x_{0}=s, \quad x_{n+1}=A x_{n}+u_{n} .
$$

The problem

LTI-REACHABILITY

- a source $s \in \mathbb{Q}^{d}$,
- a target $t \in \mathbb{Q}^{d}$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^{d}$, decide if $\exists T \in \mathbb{N}, u_{0}, \ldots, u_{T-1} \in U$ such that $x_{T}=t$ where

$$
x_{0}=s, \quad x_{n+1}=A x_{n}+u_{n} .
$$

The problem

LTI-REACHABILITY

- a source $s \in \mathbb{Q}^{d}$,
- a target $t \in \mathbb{Q}^{d}$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^{d}$, decide if $\exists T \in \mathbb{N}, u_{0}, \ldots, u_{T-1} \in U$ such that $x_{T}=t$ where

$$
x_{0}=s, \quad x_{n+1}=A x_{n}+u_{n} .
$$

Existing work

LTI-REACHABILITY

- a source $s \in \mathbb{Q}^{d}$,
- a target $t \in \mathbb{Q}^{d}$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^{d}$,
decide if $\exists T \in \mathbb{N}, u_{0}, \ldots, u_{T-1} \in U$ such that $x_{T}=t$ where

$$
x_{0}=s, \quad x_{n+1}=A x_{n}+u_{n}
$$

Existing work

LTI-REACHABILITY

- a source $s \in \mathbb{Q}^{d}$,
\rightarrow a target $t \in \mathbb{Q}^{d}$,
$>$ a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^{d}$,
decide if $\exists T \in \mathbb{N}, u_{0}, \ldots, u_{T-1} \in U$ such that $x_{T}=t$ where

$$
x_{0}=s, \quad x_{n+1}=A x_{n}+u_{n}
$$

Theorem (Lipton and Kannan, 1986)

LTI-REACHABILITY is decidable if U is an affine subspace of \mathbb{R}^{d}.

Existing work

LTI-REACHABILITY

- a source $s \in \mathbb{Q}^{d}$,
\rightarrow a target $t \in \mathbb{Q}^{d}$,
\rightarrow a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^{d}$,
decide if $\exists T \in \mathbb{N}, u_{0}, \ldots, u_{T-1} \in U$ such that $x_{T}=t$ where

$$
x_{0}=s, \quad x_{n+1}=A x_{n}+u_{n}
$$

Theorem (Lipton and Kannan, 1986)

LTI-REACHABILITY is decidable if U is an affine subspace of \mathbb{R}^{d}.
Almost no exact results for other classes of U

Existing work

LTI-REACHABILITY

- a source $s \in \mathbb{Q}^{d}$,
\rightarrow a target $t \in \mathbb{Q}^{d}$,
\rightarrow a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^{d}$,
decide if $\exists T \in \mathbb{N}, u_{0}, \ldots, u_{T-1} \in U$ such that $x_{T}=t$ where

$$
x_{0}=s, \quad x_{n+1}=A x_{n}+u_{n} .
$$

Theorem (Lipton and Kannan, 1986)

LTI-REACHABILITY is decidable if U is an affine subspace of \mathbb{R}^{d}.
Almost no exact results for other classes of U in particular when U is bounded (which is the most natural case).

Our results : hardness

Study the impact of the control set on the hardness of reachability

Our results : hardness

Study the impact of the control set on the hardness of reachability
Theorem
LTI-REACHABILITY is

- undecidable if U is a finite union of affine subspaces.

Our results : hardness

Study the impact of the control set on the hardness of reachability

Theorem

LTI-REACHABILITY is

- undecidable if U is a finite union of affine subspaces.
- Skolem-hard if $U=\{0\} \cup V$ where V is an affine subspace

Given $s \in \mathbb{Q}^{d}$ and $A \in \mathbb{Q}^{d \times d}$:

- Skolem problem : decide if $\exists T \in \mathbb{N}$ such that $\left(A^{T} s\right)_{1}=0$,

Our results : hardness

Study the impact of the control set on the hardness of reachability

Theorem

LTI-REACHABILITY is

- undecidable if U is a finite union of affine subspaces.
- Skolem-hard if $U=\{0\} \cup V$ where V is an affine subspace
- Positivity-hard if U is a convex polytope

Given $s \in \mathbb{Q}^{d}$ and $A \in \mathbb{Q}^{d \times d}$:

- Skolem problem : decide if $\exists T \in \mathbb{N}$ such that $\left(A^{T} s\right)_{1}=0$,
- Positivity problem : decide if $\left(A^{T} s\right)_{1} \geqslant 0$ for all $T \in \mathbb{N}$.

Our results : hardness

Study the impact of the control set on the hardness of reachability

Theorem

LTI-REACHABILITY is

- undecidable if U is a finite union of affine subspaces.
- Skolem-hard if $U=\{0\} \cup V$ where V is an affine subspace
- Positivity-hard if U is a convex polytope

Given $s \in \mathbb{Q}^{d}$ and $A \in \mathbb{Q}^{d \times d}$:

- Skolem problem : decide if $\exists T \in \mathbb{N}$ such that $\left(A^{T} s\right)_{1}=0$,
- Positivity problem : decide if $\left(A^{T} s\right)_{1} \geqslant 0$ for all $T \in \mathbb{N}$.

Why is this a hardness result?

Decidability of Skolen and Positivity has been open for 70 years!

Our results : hardness

Study the impact of the control set on the hardness of reachability

Theorem

LTI-REACHABILITY is

- undecidable if U is a finite union of affine subspaces.
- Skolem-hard if $U=\{0\} \cup V$ where V is an affine subspace
- Positivity-hard if U is a convex polytope

Given $s \in \mathbb{Q}^{d}$ and $A \in \mathbb{Q}^{d \times d}$:

- Skolem problem : decide if $\exists T \in \mathbb{N}$ such that $\left(A^{T} s\right)_{1}=0$,
- Positivity problem : decide if $\left(A^{T} s\right)_{1} \geqslant 0$ for all $T \in \mathbb{N}$.

Why is this a hardness result?

Decidability of Skolen and Positivity has been open for 70 years !
Since we cannot solve Skolem/Positivity, we need some strong assumptions for decidability.

Our results : a positive result

A LTI system (s, A, t, U) is simple if $s=0$ and

Our results : a positive result

A LTI system (s, A, t, U) is simple if $s=0$ and

- U is a bounded polytope that contains 0 in its (relative) interior,

Our results : a positive result

A LTI system (s, A, t, U) is simple if $s=0$ and

- U is a bounded polytope that contains 0 in its (relative) interior,
- the spectral radius of A is less than 1 (stability),

> Assumptions imply that the reachable set is an open convex bounded set,

Our results : a positive result

A LTI system (s, A, t, U) is simple if $s=0$ and

- U is a bounded polytope that contains 0 in its (relative) interior,
- the spectral radius of A is less than 1 (stability),

> Assumptions imply that the reachable set is an open convex bounded set, but not always a polytope!

Our results : a positive result

A LTI system (s, A, t, U) is simple if $s=0$ and

- U is a bounded polytope that contains 0 in its (relative) interior,
- the spectral radius of A is less than 1 (stability),
- some positive power of A has exclusively real spectrum.

Assumptions imply that the reachable set is an open convex bounded set, but not always a polytope!

Our results : a positive result

A LTI system (s, A, t, U) is simple if $s=0$ and

- U is a bounded polytope that contains 0 in its (relative) interior,
- the spectral radius of A is less than 1 (stability),
- some positive power of A has exclusively real spectrum.

Theorem

LTI-REACHABILITY is decidable for simple systems.

Assumptions imply that the reachable set is an open convex bounded set, but not always a polytope!

Our results : a positive result

A LTI system (s, A, t, U) is simple if $s=0$ and

- U is a bounded polytope that contains 0 in its (relative) interior,
- the spectral radius of A is less than 1 (stability),
- some positive power of A has exclusively real spectrum.

Theorem

LTI-REACHABILITY is decidable for simple systems.
Remark : in fact we can decide reachability to a convex polytope Q.

Assumptions imply that the reachable set is an open convex bounded set, but not always a polytope!

Why is this problem hard

The reachable set $A^{*}(U)$ can have infinitely many faces.

Why is this problem hard

The reachable set $A^{*}(U)$ can have faces of lower dimension : the "top" extreme point does not belong to any facet.

$$
A=\left[\begin{array}{ll}
\frac{2}{3} & 0 \\
0 & \frac{1}{3}
\end{array}\right]
$$

Why is this problem hard

Approach : two semi-decision procedures

- reachability : under-approximations of the reachable set
- non-reachability : separating hyperplanes

Why is this problem hard

Approach : two semi-decision procedures

- reachability : under-approximations of the reachable set
- non-reachability : separating hyperplanes

Why is this problem hard

Approach : two semi-decision procedures

- reachability : under-approximations of the reachable set
- non-reachability : separating hyperplanes

Further difficulty: a separating hyperplane may not be supported by a facet of either $A^{*}(U)$ or Q.

Why is this problem hard

$$
B=\left[\begin{array}{ll}
\frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & 0
\end{array}\right]
$$

Even more difficulty: $B^{*}(V)$ has two extreme points that do not belong to any facet and have rational coordinates, but whose (unique) separating hyperplane requires the use of algebraic irrationals

Why is this problem hard

$B=\left[\begin{array}{cc}\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & 0\end{array}\right]$

Even more difficulty: $B^{*}(V)$ has two extreme points that do not belong to any facet and have rational coordinates, but whose (unique) separating hyperplane requires the use of algebraic irrationals

Theorem (Non-reachable instances)

There is a separating hyperplane with algebraic coefficients.

Conclusion and future work

Exact reachability of $x_{n+1}=A x_{n}+u_{n}$:

Conclusion and future work

Exact reachability of $x_{n+1}=A x_{n}+u_{n}$:

- decidability crucially depends on the shape of the control set

Conclusion and future work

Exact reachability of $x_{n+1}=A x_{n}+u_{n}$:

- decidability crucially depends on the shape of the control set
- even with convex bounded inputs, the problem is very hard (Skolem/Positivity, open for 70 years)

Conclusion and future work

Exact reachability of $x_{n+1}=A x_{n}+u_{n}$:

- decidability crucially depends on the shape of the control set
- even with convex bounded inputs, the problem is very hard (Skolem/Positivity, open for 70 years)
- we can recover decidability using strong spectral assumptions

Conclusion and future work

Exact reachability of $x_{n+1}=A x_{n}+u_{n}$:

- decidability crucially depends on the shape of the control set
- even with convex bounded inputs, the problem is very hard (Skolem/Positivity, open for 70 years)
- we can recover decidability using strong spectral assumptions

Open questions:

- for convex bounded inputs, is it Positivity-easy?

Conclusion and future work

Exact reachability of $x_{n+1}=A x_{n}+u_{n}$:

- decidability crucially depends on the shape of the control set
- even with convex bounded inputs, the problem is very hard (Skolem/Positivity, open for 70 years)
- we can recover decidability using strong spectral assumptions

Open questions:

- for convex bounded inputs, is it Positivity-easy?
- weaken spectral assumptions?

Conclusion and future work

Exact reachability of $x_{n+1}=A x_{n}+u_{n}$:

- decidability crucially depends on the shape of the control set
- even with convex bounded inputs, the problem is very hard (Skolem/Positivity, open for 70 years)
- we can recover decidability using strong spectral assumptions

Open questions :

- for convex bounded inputs, is it Positivity-easy?
- weaken spectral assumptions? Minimal difficult example :

$$
A=\frac{1}{2}\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right), \quad U=[0,1] \times\{0\}
$$

Decidability of $t \leqslant \sum_{n=0}^{\infty} \max \left(0,2^{-n} \cos (n \theta)\right)$ unknown.

Conclusion and future work

Exact reachability of $x_{n+1}=A x_{n}+u_{n}$:

- decidability crucially depends on the shape of the control set
- even with convex bounded inputs, the problem is very hard (Skolem/Positivity, open for 70 years)
- we can recover decidability using strong spectral assumptions

Open questions :

- for convex bounded inputs, is it Positivity-easy?
- weaken spectral assumptions? Minimal difficult example :

$$
A=\frac{1}{2}\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right), \quad U=[0,1] \times\{0\}
$$

Decidability of $t \leqslant \sum_{n=0}^{\infty} \max \left(0,2^{-n} \cos (n \theta)\right)$ unknown.
Work in progress : continuous case $x^{\prime}(t)=A x(t)+u(t)$ Detalls

Backup slides

Continuous control

Rinse and repeat :

$$
x^{\prime}(t)=A x(t)+u(t)
$$

where $u: \mathbb{R} \rightarrow U$ measurable.
Problems : reachability, safety, controllability, ...

Continuous control

Rinse and repeat :

$$
x^{\prime}(t)=A x(t)+u(t)
$$

where $u: \mathbb{R} \rightarrow U$ measurable.
Problems : reachability, safety, controllability, ...

It looks similar but

- basic questions look harder :

$$
x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{-A s} u(s) \mathrm{d} s
$$

Continuous control

Rinse and repeat :

$$
x^{\prime}(t)=A x(t)+u(t)
$$

where $u: \mathbb{R} \rightarrow U$ measurable.
Problems : reachability, safety, controllability, ...

It looks similar but

- basic questions look harder :

$$
x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{-A s} u(s) \mathrm{d} s
$$

- harder questions look easier :
linear + continuous $=$ hard to encode problems

Continuous control : preliminary results

Theorem (Joint work with Mohan Dantam, preliminary)

Point-to-point continuous control is

- decidable in dimension 2,
- conditionally decidable with real eigen values,
- conditionally decidable in bounded time,
- Skolem/Positivity hard for point-to-set.

