random bits in practice and theory

RaCAF project

paradox of individual random objects

paradox of individual random objects

- fair coin assumption says that all sequences of N bits are equiprobable as outcomes of fair coin tossing

paradox of individual random objects

- fair coin assumption says that all sequences of N bits are equiprobable as outcomes of fair coin tossing
- still some of them refute the fair coin model while other ("random bit sequences") do not

paradox of individual random objects

- fair coin assumption says that all sequences of N bits are equiprobable as outcomes of fair coin tossing
- still some of them refute the fair coin model while other ("random bit sequences") do not

Is randomness real?

randomness around us

more serious efforts

2
table of random digits
$00050 \quad 09188 \quad 20097$
$\begin{array}{lll}00051 & 90045 & 85497 \\ 00052 & 73189 & 50207\end{array}$
00052
00053
00054

7318950207 7576876490 5401644056

32825395270422086304

 5198150654 4767726269 2097187749 6628131003 00682273988338987374 91870 2712467018 9537505818 2071453295 2071453295

6427858044 6847664659 4136182760 9382343178 $\begin{array}{ll}93823 & 43178 \\ 07706 & 17813\end{array}$

Rand Corporation, A Million Random Digits with 100,000

 Normal Deviates (1955)
electronic devices

I: probability theory

I: probability theory

- test: a set of $T \subset\{0,1\}^{N}$ that has very small probability

I: probability theory

- test: a set of $T \subset\{0,1\}^{N}$ that has very small probability
- if $x \in A$, then x fails the test

I: probability theory

- test: a set of $T \subset\{0,1\}^{N}$ that has very small probability
- if $x \in A$, then x fails the test
- large deviations theorems

I: probability theory

- test: a set of $T \subset\{0,1\}^{N}$ that has very small probability
- if $x \in A$, then x fails the test
- large deviations theorems
- limit theorems

I: probability theory

- test: a set of $T \subset\{0,1\}^{N}$ that has very small probability
- if $x \in A$, then x fails the test
- large deviations theorems
- limit theorems
- statistics (χ^{2}, Kolmogorov-Smirnov, ...)

I: probability theory

- test: a set of $T \subset\{0,1\}^{N}$ that has very small probability
- if $x \in A$, then x fails the test
- large deviations theorems
- limit theorems
- statistics (χ^{2}, Kolmogorov-Smirnov, ...)
- "test should be fixed before the experiment": unclear but essential

I: probability theory

- test: a set of $T \subset\{0,1\}^{N}$ that has very small probability
- if $x \in A$, then x fails the test
- large deviations theorems
- limit theorems
- statistics (χ^{2}, Kolmogorov-Smirnov, ...)
- "test should be fixed before the experiment": unclear but essential
- Bonferroni correction

II: algorithmic information theory

II: algorithmic information theory

- randomness \approx incompressibility

II: algorithmic information theory

- randomness \approx incompressibility
- no program shorter than the sequence can produce it

II: algorithmic information theory

- randomness \approx incompressibility
- no program shorter than the sequence can produce it
- Kolmogorov complexity \approx length

II: algorithmic information theory

- randomness \approx incompressibility
- no program shorter than the sequence can produce it
- Kolmogorov complexity \approx length
- obstacle I: non-computability of complexity (one can prove non-randomness but not randomness)

II: algorithmic information theory

- randomness \approx incompressibility
- no program shorter than the sequence can produce it
- Kolmogorov complexity \approx length
- obstacle I: non-computability of complexity (one can prove non-randomness but not randomness)
- obstacle II: arbitrary constants

II: algorithmic information theory

- randomness \approx incompressibility
- no program shorter than the sequence can produce it
- Kolmogorov complexity \approx length
- obstacle I: non-computability of complexity (one can prove non-randomness but not randomness)
- obstacle II: arbitrary constants
- still the choice of programming language in advance is more reasonable than the choice of the test

III: computational complexity

III: computational complexity

- not individual sequences but mappings (Yao, Blum-Micali)

III: computational complexity

- not individual sequences but mappings (Yao, Blum-Micali)
- G: short n-bit seed \mapsto long N-bit sequence

III: computational complexity

- not individual sequences but mappings (Yao, Blum-Micali)
- G: short n-bit seed \mapsto long N-bit sequence
- mapping G easy to compute

III: computational complexity

- not individual sequences but mappings (Yao, Blum-Micali)
- G: short n-bit seed \mapsto long N-bit sequence
- mapping G easy to compute (all images compressible)

III: computational complexity

- not individual sequences but mappings (Yao, Blum-Micali)
- G: short n-bit seed \mapsto long N-bit sequence
- mapping G easy to compute (all images compressible)
- no easily computable test $T \subset\{0,1\}^{N}$ can distinguish the output from random N bits:

$$
\operatorname{Pr}_{x \in\{0,1\}^{n}}[G(x) \in T] \approx \operatorname{Pr}_{y \in\{0,1\}^{N}}[y \in T]
$$

III: computational complexity

- not individual sequences but mappings (Yao, Blum-Micali)
- G: short n-bit seed \mapsto long N-bit sequence
- mapping G easy to compute (all images compressible)
- no easily computable test $T \subset\{0,1\}^{N}$ can distinguish the output from random N bits:

$$
\operatorname{Pr}_{x \in\{0,1\}^{n}}[G(x) \in T] \approx \operatorname{Pr}_{y \in\{0,1\}^{N}}[y \in T]
$$

- easily computable \approx polynomial-size circuits

III: computational complexity

- not individual sequences but mappings (Yao, Blum-Micali)
- G: short n-bit seed \mapsto long N-bit sequence
- mapping G easy to compute (all images compressible)
- no easily computable test $T \subset\{0,1\}^{N}$ can distinguish the output from random N bits:

$$
\operatorname{Pr}_{x \in\{0,1\}^{n}}[G(x) \in T] \approx \operatorname{Pr}_{y \in\{0,1\}^{\top}}[y \in T]
$$

- easily computable \approx polynomial-size circuits
- exist iff one-way functions exist (Hastad, Impagliazzo, Luby, Levin)

IV: combinatorics, randomness extractors

IV: combinatorics, randomness extractors

- $D: \mathbb{B}^{n} \times \mathbb{B}^{d} \rightarrow \mathbb{B}^{m}$:
D (reasonable random long, short independent random) almost random and rather long

IV: combinatorics, randomness extractors

- $D: \mathbb{B}^{n} \times \mathbb{B}^{d} \rightarrow \mathbb{B}^{m}$:
D (reasonable random long, short independent random) almost random and rather long
- if ξ is a random variable in \mathbb{B}^{n} with large min-entropy, ρ is an independent uniform random variable in \mathbb{B}^{d}, then $D(\xi, \rho)$ has distribution that is statistically $\left(L_{1}\right)$ close to the uniform on \mathbb{B}^{m}

IV: combinatorics, randomness extractors

- $D: \mathbb{B}^{n} \times \mathbb{B}^{d} \rightarrow \mathbb{B}^{m}$:
D (reasonable random long, short independent random) almost random and rather long
- if ξ is a random variable in \mathbb{B}^{n} with large min-entropy, ρ is an independent uniform random variable in \mathbb{B}^{d}, then $D(\xi, \rho)$ has distribution that is statistically $\left(L_{1}\right)$ close to the uniform on \mathbb{B}^{m}
- existence can be proven

IV: combinatorics, randomness extractors

- $D: \mathbb{B}^{n} \times \mathbb{B}^{d} \rightarrow \mathbb{B}^{m}$:
D (reasonable random long, short independent random) almost random and rather long
- if ξ is a random variable in \mathbb{B}^{n} with large min-entropy, ρ is an independent uniform random variable in \mathbb{B}^{d}, then $D(\xi, \rho)$ has distribution that is statistically $\left(L_{1}\right)$ close to the uniform on \mathbb{B}^{m}
- existence can be proven
- some explicit constructions

IV: combinatorics, randomness extractors

- $D: \mathbb{B}^{n} \times \mathbb{B}^{d} \rightarrow \mathbb{B}^{m}:$
D (reasonable random long, short independent random) almost random and rather long
- if ξ is a random variable in \mathbb{B}^{n} with large min-entropy, ρ is an independent uniform random variable in \mathbb{B}^{d}, then $D(\xi, \rho)$ has distribution that is statistically $\left(L_{1}\right)$ close to the uniform on \mathbb{B}^{m}
- existence can be proven
- some explicit constructions
- also two independent weakly random sources

random bits

needed for:

random bits

needed for:

- random sampling in statistics

random bits

needed for:

- random sampling in statistics
- draws, lotteries,...

random bits

needed for:

- random sampling in statistics
- draws, lotteries,...
- Monte-Carlo computations

random bits

needed for:

- random sampling in statistics
- draws, lotteries,...
- Monte-Carlo computations
- more general, simulations

random bits

needed for:

- random sampling in statistics
- draws, lotteries,...
- Monte-Carlo computations
- more general, simulations
- randomized algorithms could be more efficient:

random bits

needed for:

- random sampling in statistics
- draws, lotteries,...
- Monte-Carlo computations
- more general, simulations
- randomized algorithms could be more efficient:
- quick sort with random pivot

random bits

needed for:

- random sampling in statistics
- draws, lotteries,...
- Monte-Carlo computations
- more general, simulations
- randomized algorithms could be more efficient:
- quick sort with random pivot
- primality testing

random bits

needed for:

- random sampling in statistics
- draws, lotteries,...
- Monte-Carlo computations
- more general, simulations
- randomized algorithms could be more efficient:
- quick sort with random pivot
- primality testing
- computing an average of some array

random bits

needed for:

- random sampling in statistics
- draws, lotteries,...
- Monte-Carlo computations
- more general, simulations
- randomized algorithms could be more efficient:
- quick sort with random pivot
- primality testing
- computing an average of some array
- cryptographic protocols (one-time pad, secret sharing)

"deterministic random bits"

"deterministic random bits"

- fix $f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$, let $x_{n+1}=f\left(x_{n}\right)$

"deterministic random bits"

- fix $f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$, let $x_{n+1}=f\left(x_{n}\right)$
- von Neumann: middle digits of a square
"deterministic random bits"
- fix $f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$, let $x_{n+1}=f\left(x_{n}\right)$
- von Neumann: middle digits of a square
- linear/affine mapping in a finite field
- fix $f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$, let $x_{n+1}=f\left(x_{n}\right)$
- von Neumann: middle digits of a square
- linear/affine mapping in a finite field
- not random in any reasonable sense (computable, predictable)
- fix $f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$, let $x_{n+1}=f\left(x_{n}\right)$
- von Neumann: middle digits of a square
- linear/affine mapping in a finite field
- not random in any reasonable sense (computable, predictable)
- but still could have good convergence for Monte-Carlo etc.

hardware randomness

hardware randomness

- also called "non-deterministic random generators"

hardware randomness

- also called "non-deterministic random generators"
- some process (thermal noise, radioactive decay, photons reflection, environment, ...) is used

hardware randomness

- also called "non-deterministic random generators"
- some process (thermal noise, radioactive decay, photons reflection, environment, ...) is used
- physics claims some probability distribution

hardware randomness

- also called "non-deterministic random generators"
- some process (thermal noise, radioactive decay, photons reflection, environment, ...) is used
- physics claims some probability distribution
- usually some conditioning/whitening is needed

hardware randomness

- also called "non-deterministic random generators"
- some process (thermal noise, radioactive decay, photons reflection, environment, ...) is used
- physics claims some probability distribution
- usually some conditioning/whitening is needed
- "centaurs": hardware seed generation plus deterministic transformation (Yao, Blum-Micali)

hardware randomness

- also called "non-deterministic random generators"
- some process (thermal noise, radioactive decay, photons reflection, environment, ...) is used
- physics claims some probability distribution
- usually some conditioning/whitening is needed
- "centaurs": hardware seed generation plus deterministic transformation (Yao, Blum-Micali)
- a special type of "whitening": no hope to get uniform randomness, just computably indistinguishable

what is a test?

what is a test?

- hardware RNG: special case of statistical testing

what is a test?

- hardware RNG: special case of statistical testing
- null hypothesis $H_{0}=$ uniform distribution

what is a test?

- hardware RNG: special case of statistical testing
- null hypothesis $H_{0}=$ uniform distribution
- test: a small set of binary strings

what is a test?

- hardware RNG: special case of statistical testing
- null hypothesis $H_{0}=$ uniform distribution
- test: a small set of binary strings
- its elements fail the test

what is a test?

- hardware RNG: special case of statistical testing
- null hypothesis $H_{0}=$ uniform distribution
- test: a small set of binary strings
- its elements fail the test
- should be specified in advance...

what is a test?

- hardware RNG: special case of statistical testing
- null hypothesis $H_{0}=$ uniform distribution
- test: a small set of binary strings
- its elements fail the test
- should be specified in advance...
- or be so simple that it could be specified in advance

what is a test?

- hardware RNG: special case of statistical testing
- null hypothesis $H_{0}=$ uniform distribution
- test: a small set of binary strings
- its elements fail the test
- should be specified in advance...
- or be so simple that it could be specified in advance
- "deterministic RNG" may also pass some tests

what is a test?

- hardware RNG: special case of statistical testing
- null hypothesis $H_{0}=$ uniform distribution
- test: a small set of binary strings
- its elements fail the test
- should be specified in advance...
- or be so simple that it could be specified in advance
- "deterministic RNG" may also pass some tests
- conjecture: digits of π form a normal sequence

history of tests

history of tests

- early history described in Knuth (vol.2, 1969)
history of tests
- early history described in Knuth (vol.2, 1969)
- law of large numbers ($\# 0 \approx \# 1$)
history of tests
- early history described in Knuth (vol.2, 1969)
- law of large numbers ($\# 0 \approx \# 1$)
- χ^{2}-tests for frequencies of bytes, etc.
history of tests
- early history described in Knuth (vol.2, 1969)
- law of large numbers ($\# 0 \approx \# 1$)
- χ^{2}-tests for frequencies of bytes, etc.
- used when generating tables of random numbers
history of tests
- early history described in Knuth (vol.2, 1969)
- law of large numbers ($\# 0 \approx \# 1$)
- χ^{2}-tests for frequencies of bytes, etc.
- used when generating tables of random numbers
- Marsaglia diehard (1985-1995): still used
history of tests
- early history described in Knuth (vol.2, 1969)
- law of large numbers ($\# 0 \approx \# 1$)
- χ^{2}-tests for frequencies of bytes, etc.
- used when generating tables of random numbers
- Marsaglia diehard (1985-1995): still used
- Brown dieharder (2005): more flexible
history of tests
- early history described in Knuth (vol.2, 1969)
- law of large numbers ($\# 0 \approx \# 1$)
- χ^{2}-tests for frequencies of bytes, etc.
- used when generating tables of random numbers
- Marsaglia diehard (1985-1995): still used
- Brown dieharder (2005): more flexible
- NIST 800-22 (2000, 2010), STS
history of tests
- early history described in Knuth (vol.2, 1969)
- law of large numbers ($\# 0 \approx \# 1$)
- χ^{2}-tests for frequencies of bytes, etc.
- used when generating tables of random numbers
- Marsaglia diehard (1985-1995): still used
- Brown dieharder (2005): more flexible
- NIST 800-22 (2000, 2010), STS
- Simard, l'Ecuyer TestU01 (2007)

example of tests

example of tests

- incompressibility (gzip as a test)

example of tests

- incompressibility (gzip as a test)
- limit theorems in probability theory

example of tests

- incompressibility (gzip as a test)
- limit theorems in probability theory
- p-values: let $S: \mathbb{B}^{n} \rightarrow \mathbb{R}$ be any function

example of tests

- incompressibility (gzip as a test)
- limit theorems in probability theory
$-p$-values: let $S: \mathbb{B}^{n} \rightarrow \mathbb{R}$ be any function
- for each $x \in \mathbb{B}^{n}$ we compute the p-value for x

example of tests

- incompressibility (gzip as a test)
- limit theorems in probability theory
$-p$-values: let $S: \mathbb{B}^{n} \rightarrow \mathbb{R}$ be any function
- for each $x \in \mathbb{B}^{n}$ we compute the p-value for x $p_{S}(x)=\operatorname{Pr}[S(r) \geqslant S(x)]$ for random $r \in \mathbb{B}^{n}$

example of tests

- incompressibility (gzip as a test)
- limit theorems in probability theory
- p-values: let $S: \mathbb{B}^{n} \rightarrow \mathbb{R}$ be any function
- for each $x \in \mathbb{B}^{n}$ we compute the p-value for x $p_{S}(x)=\operatorname{Pr}[S(r) \geqslant S(x)]$ for random $r \in \mathbb{B}^{n}$
- if $p_{S}(x)$ is very small, x fails the S-test

example of tests

- incompressibility (gzip as a test)
- limit theorems in probability theory
- p-values: let $S: \mathbb{B}^{n} \rightarrow \mathbb{R}$ be any function
- for each $x \in \mathbb{B}^{n}$ we compute the p-value for x $p_{S}(x)=\operatorname{Pr}[S(r) \geqslant S(x)]$ for random $r \in \mathbb{B}^{n}$
- if $p_{S}(x)$ is very small, x fails the S-test
- if each value of S has negligible probability, $p_{S}(x)$ is uniformly distributed in $[0,1]$

example of tests

- incompressibility (gzip as a test)
- limit theorems in probability theory
$-p$-values: let $S: \mathbb{B}^{n} \rightarrow \mathbb{R}$ be any function
- for each $x \in \mathbb{B}^{n}$ we compute the p-value for x $p_{S}(x)=\operatorname{Pr}[S(r) \geqslant S(x)]$ for random $r \in \mathbb{B}^{n}$
- if $p_{S}(x)$ is very small, x fails the S-test
- if each value of S has negligible probability, $p_{S}(x)$ is uniformly distributed in $[0,1]$
- so one can use tests (e.g., Kolmogorov-Smirnov) for independent values of $p_{S}(x)$

example of tests

- incompressibility (gzip as a test)
- limit theorems in probability theory
- p-values: let $S: \mathbb{B}^{n} \rightarrow \mathbb{R}$ be any function
- for each $x \in \mathbb{B}^{n}$ we compute the p-value for x $p_{S}(x)=\operatorname{Pr}[S(r) \geqslant S(x)]$ for random $r \in \mathbb{B}^{n}$
- if $p_{S}(x)$ is very small, x fails the S-test
- if each value of S has negligible probability, $p_{S}(x)$ is uniformly distributed in $[0,1]$
- so one can use tests (e.g., Kolmogorov-Smirnov) for independent values of $p_{S}(x)$
- secondary tests (in Knuth, widely used in diehard)

tests in algorithmic information theory

tests in algorithmic information theory

- Martin-Löf: randomness for infinite sequences
tests in algorithmic information theory
- Martin-Löf: randomness for infinite sequences
- test: decreasing sequence of open sets (elements of U_{i} have randomness deficiency $\left.\leqslant i: \operatorname{Pr}\left[U_{i}\right] \leqslant 2^{-i}\right)$
tests in algorithmic information theory
- Martin-Löf: randomness for infinite sequences
- test: decreasing sequence of open sets (elements of U_{i} have randomness deficiency $\leqslant i: \operatorname{Pr}\left[U_{i}\right] \leqslant 2^{-i}$)
- probability-bounded and expectation-bounded tests (Levin, Gács)
tests in algorithmic information theory
- Martin-Löf: randomness for infinite sequences
- test: decreasing sequence of open sets (elements of U_{i} have randomness deficiency $\left.\leqslant i: \operatorname{Pr}\left[U_{i}\right] \leqslant 2^{-i}\right)$
- probability-bounded and expectation-bounded tests (Levin, Gács)
- universal test: finite for random sequences; adding a long prefix of zeros increases deficiency but it remains finite
tests in algorithmic information theory
- Martin-Löf: randomness for infinite sequences
- test: decreasing sequence of open sets (elements of U_{i} have randomness deficiency $\left.\leqslant i: \operatorname{Pr}\left[U_{i}\right] \leqslant 2^{-i}\right)$
- probability-bounded and expectation-bounded tests (Levin, Gács)
- universal test: finite for random sequences; adding a long prefix of zeros increases deficiency but it remains finite
- Schnorr-Levin-Gács theorem: expression for the universal test in terms of Kolmogorov complexity
tests in algorithmic information theory
- Martin-Löf: randomness for infinite sequences
- test: decreasing sequence of open sets (elements of U_{i} have randomness deficiency $\left.\leqslant i: \operatorname{Pr}\left[U_{i}\right] \leqslant 2^{-i}\right)$
- probability-bounded and expectation-bounded tests (Levin, Gács)
- universal test: finite for random sequences; adding a long prefix of zeros increases deficiency but it remains finite
- Schnorr-Levin-Gács theorem: expression for the universal test in terms of Kolmogorov complexity
- quantitative algorithmic randomness theory

goals of RaCAF

- try to bridge the gap between theory and practice
- try to bridge the gap between theory and practice
- isolate the problematic points

goals of RaCAF

- try to bridge the gap between theory and practice
- isolate the problematic points
- evaluations/recommendations

goals of RaCAF

- try to bridge the gap between theory and practice
- isolate the problematic points
- evaluations/recommendations
- improvements
theory vs. practice: ID Quantique

theory vs. practice: ID Quantique

However, if one were to be given a number, it is simply impossible to verify whether it was produced by a random number generator or not. It is hence absolutely essential to consider sequences of numbers in order to study the randomness of the output of such a generator.

It is quite straightforward to define whether a sequence of infinite length is random or not. This sequence is random if the quantity of information it contains - in the sense of Shannon's information theory - is also infinite.

In other words, it must not be possible for a computer program, whose length is finite, to produce this sequence. Interestingly, an infinite random sequence contains all possible finite sequences.

(white paper)

theory vs. practice: ID Quantique

However, if one were to be given a number, it is simply impossible to verify whether it was produced by a random number generator or not. It is hence absolutely essential to consider sequences of numbers in order to study the randomness of the output of such a generator.

It is quite straightforward to define whether a sequence of infinite length is random or not. This sequence is random if the quantity of information it contains - in the sense of Shannon's information theory - is also infinite.

In other words, it must not be possible for a computer program, whose length is finite, to produce this sequence. Interestingly, an infinite random sequence contains all possible finite sequences.

(white paper)

- randomness is mixed with non-computability

theory vs. practice: ID Quantique

However, if one were to be given a number, it is simply impossible to verify whether it was produced by a random number generator or not. It is hence absolutely essential to consider sequences of numbers in order to study the randomness of the output of such a generator.

It is quite straightforward to define whether a sequence of infinite length is random or not. This sequence is random if the quantity of information it contains - in the sense of Shannon's information theory - is also infinite.

In other words, it must not be possible for a computer program, whose length is finite, to produce this sequence. Interestingly, an infinite random sequence contains all possible finite sequences.

(white paper)

- randomness is mixed with non-computability
 - (making the last statement false)

theory vs. practice: NIST 800-22-1a

theory vs. practice: NIST 800-22-1a

- type I error probability of failing the test assuming the null hypothesis H_{0} (ok)

theory vs. practice: NIST 800-22-1a

- type I error probability of failing the test assuming the null hypothesis H_{0} (ok)
- "Type II error probability is $\langle\ldots\rangle P\left(\right.$ accept $H_{0} \mid H_{0}$ is false $) "(1-4)$

theory vs. practice: NIST 800-22-1a

- type I error probability of failing the test assuming the null hypothesis H_{0} (ok)
- "Type II error probability is $\langle\ldots\rangle P\left(\right.$ accept $H_{0} \mid H_{0}$ is false $)$ " (1-4)
- but " H_{0} is false" does not define any distribution

theory vs. practice: NIST 800-22-1a

- type I error probability of failing the test assuming the null hypothesis H_{0} (ok)
- "Type II error probability is $\langle\ldots\rangle P\left(\right.$ accept $H_{0} \mid H_{0}$ is false)" (1-4)
- but " H_{0} is false" does not define any distribution
- "Unlike α [the probability of Type I error], β is not a fixed value. $\langle\ldots\rangle$ The calculation of Type II error β is more difficult than the calculation of α because of the many possible types of non-randomness"

theory vs. practice: NIST 800-22-1a

- type I error probability of failing the test assuming the null hypothesis H_{0} (ok)
- "Type II error probability is $\langle\ldots\rangle P\left(\right.$ accept $H_{0} \mid H_{0}$ is false)" (1-4)
- but " H_{0} is false" does not define any distribution
- "Unlike α [the probability of Type I error], β is not a fixed value. $\langle\ldots\rangle$ The calculation of Type II error β is more difficult than the calculation of α because of the many possible types of non-randomness"
- "If a P-value for a test is determined to be equal to 1 , then the sequence appears to have perfect randomness" (1-4)

theory vs. practice: NIST 800-22-1a

- type I error probability of failing the test assuming the null hypothesis H_{0} (ok)
- "Type II error probability is $\langle\ldots\rangle P\left(\right.$ accept $H_{0} \mid H_{0}$ is false)" (1-4)
- but " H_{0} is false" does not define any distribution
- "Unlike α [the probability of Type I error], β is not a fixed value. 〈...〉 The calculation of Type II error β is more difficult than the calculation of α because of the many possible types of non-randomness"
- "If a P-value for a test is determined to be equal to 1 , then the sequence appears to have perfect randomness" (1-4)
- "For a P-value $\geqslant 0.001$, a sequence would be considered to be random with a confidence of 99.9%. For a P-value <0.001, a sequence would be considered to be non-random with a confidence of 99.9\%" (1-4)

theory vs. practice: NIST 800-22-1a

- type I error probability of failing the test assuming the null hypothesis H_{0} (ok)
- "Type II error probability is $\langle\ldots\rangle P\left(\right.$ accept $H_{0} \mid H_{0}$ is false)" (1-4)
- but " H_{0} is false" does not define any distribution
- "Unlike α [the probability of Type I error], β is not a fixed value. $\langle\ldots\rangle$ The calculation of Type II error β is more difficult than the calculation of α because of the many possible types of non-randomness"
- "If a P-value for a test is determined to be equal to 1 , then the sequence appears to have perfect randomness" (1-4)
- "For a P-value $\geqslant 0.001$, a sequence would be considered to be random with a confidence of 99.9%. For a P-value <0.001, a sequence would be considered to be non-random with a confidence of 99.9\%" (1-4)
- two incorrect tests deleted from the second version
theory vs. practice: diehard[er]

theory vs. practice: diehard[er]

- passing the test guarantees nothing (ok, unavoidable)
theory vs. practice: diehard[er]
- passing the test guarantees nothing (ok, unavoidable)
- what about failing the test?
theory vs. practice: diehard[er]
- passing the test guarantees nothing (ok, unavoidable)
- what about failing the test?
- computation of p-values based on heuristic assumptions
theory vs. practice: diehard[er]
- passing the test guarantees nothing (ok, unavoidable)
- what about failing the test?
- computation of p-values based on heuristic assumptions
- diehard: secondary tests based on incorrect assumptions

theory vs. practice: diehard[er]

- passing the test guarantees nothing (ok, unavoidable)
- what about failing the test?
- computation of p-values based on heuristic assumptions
- diehard: secondary tests based on incorrect assumptions
- dieharder: "At this point I think there is rock solid evidence that this test [one of the diehard tests] is completely useless in every sense of the word. It is broken, and it is so broken that there is no point in trying to fix it. The problem is that the transformation above is not linear, and doesn't work. Don't use it."

theory vs. practice: entropy

theory vs. practice: entropy

- entropy of a distribution (Shannon)

theory vs. practice: entropy

- entropy of a distribution (Shannon)
- for individual objects: Kolmogorov complexity

theory vs. practice: entropy

- entropy of a distribution (Shannon)
- for individual objects: Kolmogorov complexity
- a liquid produced by generators and accumulated in pools?
"The central mathematical concept underlying this [NIST] Recommendation is entropy. Entropy is defined relative to one's knowledge of an experiment's output prior to observation, and reflects the uncertainty associated with predicting its value - the larger the amount of entropy, the greater the uncertainty in predicting the value of an observation"

theory vs. practice: entropy

- entropy of a distribution (Shannon)
- for individual objects: Kolmogorov complexity
- a liquid produced by generators and accumulated in pools?
"The central mathematical concept underlying this [NIST] Recommendation is entropy. Entropy is defined relative to one's knowledge of an experiment's output prior to observation, and reflects the uncertainty associated with predicting its value - the larger the amount of entropy, the greater the uncertainty in predicting the value of an observation"
- "Each bit of a bitstring with full entropy has a uniform distribution and is independent of every other bit of that bitstring. Simplistically, this means that a bitstring has full entropy if every bit of the bitstring has one bit of entropy; the amount of entropy in the bitstring is equal to its length' (same NIST document)

theory vs. practice: whitening

theory vs. practice: whitening

- Santha-Vazirani sources: X_{1}, \ldots, X_{n}
theory vs. practice: whitening
- Santha-Vazirani sources: X_{1}, \ldots, X_{n}
- $\operatorname{Pr}\left[X_{i}=1 \mid X_{0}=x_{0}, \ldots, X_{i-1}=x_{i-1}\right] \in(1 / 3,2 / 3)$
theory vs. practice: whitening
- Santha-Vazirani sources: X_{1}, \ldots, X_{n}
- $\operatorname{Pr}\left[X_{i}=1 \mid x_{0}=x_{0}, \ldots, X_{i-1}=x_{i-1}\right] \in(1 / 3,2 / 3)$
- "no value can be predicted for sure"
theory vs. practice: whitening
- Santha-Vazirani sources: X_{1}, \ldots, X_{n}
- $\operatorname{Pr}\left[X_{i}=1 \mid x_{0}=x_{0}, \ldots, X_{i-1}=x_{i-1}\right] \in(1 / 3,2 / 3)$
- "no value can be predicted for sure"
- F: a deterministic transformation
theory vs. practice: whitening
- Santha-Vazirani sources: X_{1}, \ldots, X_{n}
- $\operatorname{Pr}\left[X_{i}=1 \mid X_{0}=x_{0}, \ldots, X_{i-1}=x_{i-1}\right] \in(1 / 3,2 / 3)$
- "no value can be predicted for sure"
- F: a deterministic transformation
- can we guarantee that $F\left(X_{1}, \ldots, X_{n}\right)$ is close to a fair coin?
theory vs. practice: whitening
- Santha-Vazirani sources: X_{1}, \ldots, X_{n}
- $\operatorname{Pr}\left[X_{i}=1 \mid X_{0}=x_{0}, \ldots, X_{i-1}=x_{i-1}\right] \in(1 / 3,2 / 3)$
- "no value can be predicted for sure"
- F: a deterministic transformation
- can we guarantee that $F\left(X_{1}, \ldots, X_{n}\right)$ is close to a fair coin?
- nothing better than $(1 / 3,2 / 3)$
theory vs. practice: whitening
- Santha-Vazirani sources: X_{1}, \ldots, X_{n}
- $\operatorname{Pr}\left[X_{i}=1 \mid X_{0}=x_{0}, \ldots, X_{i-1}=x_{i-1}\right] \in(1 / 3,2 / 3)$
- "no value can be predicted for sure"
- F: a deterministic transformation
- can we guarantee that $F\left(X_{1}, \ldots, X_{n}\right)$ is close to a fair coin?
- nothing better than (1/3,2/3)
- similar results for k bits: for $F: \mathbb{B}^{n} \rightarrow \mathbb{B}^{k}$ there is SV source and some k-bit output string that appear with probability at least $(2 / 3)^{k}$ instead of $(1 / 2)^{k}$

theory vs. practice: randomness extraction

theory vs. practice: randomness extraction

- $F(X, R)$ is statistically close to uniform randomness if
theory vs. practice: randomness extraction
- $F(X, R)$ is statistically close to uniform randomness if
- X is long and has reasonable min-entropy

theory vs. practice: randomness extraction

- $F(X, R)$ is statistically close to uniform randomness if
- X is long and has reasonable min-entropy
- R is short but perfectly random

theory vs. practice: randomness extraction

- $F(X, R)$ is statistically close to uniform randomness if
- X is long and has reasonable min-entropy
- R is short but perfectly random
- X and R are independent
theory vs. practice: randomness extraction
- $F(X, R)$ is statistically close to uniform randomness if
- X is long and has reasonable min-entropy
- R is short but perfectly random
- X and R are independent
- IDquantique uses this approach
theory vs. practice: randomness extraction
- $F(X, R)$ is statistically close to uniform randomness if
- X is long and has reasonable min-entropy
- R is short but perfectly random
- X and R are independent
- IDquantique uses this approach
- but for fixed R (generated, sent with the device)
theory vs. practice: randomness extraction
- $F(X, R)$ is statistically close to uniform randomness if
- X is long and has reasonable min-entropy
- R is short but perfectly random
- X and R are independent
- IDquantique uses this approach
- but for fixed R (generated, sent with the device)
- so nothing is guaranteed
theory vs. practice: randomness extraction
- $F(X, R)$ is statistically close to uniform randomness if
- X is long and has reasonable min-entropy
- R is short but perfectly random
- X and R are independent
- IDquantique uses this approach
- but for fixed R (generated, sent with the device)
- so nothing is guaranteed
- strong extractor: $(F(X, R), R) \approx$ uniform
theory vs. practice: randomness extraction
- $F(X, R)$ is statistically close to uniform randomness if
- X is long and has reasonable min-entropy
- R is short but perfectly random
- X and R are independent
- IDquantique uses this approach
- but for fixed R (generated, sent with the device)
- so nothing is guaranteed
- strong extractor: $(F(X, R), R) \approx$ uniform
- can be saved, but only with half of the security parameter

theory vs. practice: using independence

theory vs. practice: using independence

- randomness extractors with several independent sources
theory vs. practice: using independence
- randomness extractors with several independent sources
- exist with good parameters
theory vs. practice: using independence
- randomness extractors with several independent sources
- exist with good parameters
- only the simplest approach seems to be used
theory vs. practice: using independence
- randomness extractors with several independent sources
- exist with good parameters
- only the simplest approach seems to be used
- if X_{1}, \ldots, X_{n} are independent and
$\operatorname{Pr}\left[X_{i}=1\right] \in(1 / 3,2 / 3)$,
$X_{1} \oplus \ldots \oplus X_{n}$ is exponentially close to a fair coin
theory vs. practice: using independence
- randomness extractors with several independent sources
- exist with good parameters
- only the simplest approach seems to be used
- if X_{1}, \ldots, X_{n} are independent and $\operatorname{Pr}\left[X_{i}=1\right] \in(1 / 3,2 / 3)$, $X_{1} \oplus \ldots \oplus X_{n}$ is exponentially close to a fair coin
- independence is physically plausible

theory vs. practice: coding

theory vs. practice: coding

- dieharder: non-reproducible results even with fixed seed

theory vs. practice: coding

- dieharder: non-reproducible results even with fixed seed
- wrong computation of Kolmogorov-Smirnov statistics

theory vs. practice: coding

- dieharder: non-reproducible results even with fixed seed
- wrong computation of Kolmogorov-Smirnov statistics
- tests are hard to debug

theory vs. practice: coding

- dieharder: non-reproducible results even with fixed seed
- wrong computation of Kolmogorov-Smirnov statistics
- tests are hard to debug
- NIST says:

In practice, many reasons can be given to explain why a data set has failed a statistical test. The following is a list of possible explanations.
The list was compiled based upon NIST statistical testing efforts.

1. An incorrectly programmed statistical test.
2. An underdeveloped (immature) statistical test.
3. An improper implementation of a random number generator.
4. Improperly written codes to harness test input data.
5. Poor mathematical routines for computing P-values.
6. Incorrect choices for input parameters.

how to make tests robust

how to make tests robust

- we do not know the exact distribution of a statistic S and p-values are unreliable
how to make tests robust
- we do not know the exact distribution of a statistic S and p-values are unreliable
- for secondary test it is not necessary if we use Kolmogorov-Smirnov test for two samples: $S\left(x_{1}\right), \ldots, S\left(x_{n}\right)$ and $S\left(y_{1}\right), \ldots, S\left(y_{m}\right)$
how to make tests robust
- we do not know the exact distribution of a statistic S and p-values are unreliable
- for secondary test it is not necessary if we use Kolmogorov-Smirnov test for two samples: $S\left(x_{1}\right), \ldots, S\left(x_{n}\right)$ and $S\left(y_{1}\right), \ldots, S\left(y_{m}\right)$
- x_{1}, \ldots, x_{n} from the generator we test, y_{1}, \ldots, y_{m} from a reference generator
how to make tests robust
- we do not know the exact distribution of a statistic S and p-values are unreliable
- for secondary test it is not necessary if we use Kolmogorov-Smirnov test for two samples: $S\left(x_{1}\right), \ldots, S\left(x_{n}\right)$ and $S\left(y_{1}\right), \ldots, S\left(y_{m}\right)$
- x_{1}, \ldots, x_{n} from the generator we test, y_{1}, \ldots, y_{m} from a reference generator
- may reject a good generator using a bad reference
how to make tests robust
- we do not know the exact distribution of a statistic S and p-values are unreliable
- for secondary test it is not necessary if we use Kolmogorov-Smirnov test for two samples: $S\left(x_{1}\right), \ldots, S\left(x_{n}\right)$ and $S\left(y_{1}\right), \ldots, S\left(y_{m}\right)$
- x_{1}, \ldots, x_{n} from the generator we test, y_{1}, \ldots, y_{m} from a reference generator
- may reject a good generator using a bad reference
- $S\left(x_{1}\right), \ldots, S\left(x_{n}\right)$ vs $S\left(x_{n+1} \oplus y_{1}\right), \ldots, S\left(x_{n+m} \oplus y_{m}\right)$

survey of available generators

parameters to take into account:

survey of available generators

parameters to take into account:

- noise source

survey of available generators

parameters to take into account:

- noise source
- whitening

survey of available generators

parameters to take into account:

- noise source
- whitening
- access to raw noise

survey of available generators

parameters to take into account:

- noise source
- whitening
- access to raw noise
- rate

survey of available generators

parameters to take into account:

- noise source
- whitening
- access to raw noise
- rate
- cost

survey of available generators

parameters to take into account:

- noise source
- whitening
- access to raw noise
- rate
- cost
- software integration

survey of available generators

parameters to take into account:

- noise source
- whitening
- access to raw noise
- rate
- cost
- software integration
- bonus: open source hard/software

Araneus

\$\$\$, zener noise, 100 kbits/s, raw=no, whitening=?

"The raw output bits from the A/D converter are then further processed by an embedded microprocessor to combine the entropy from multiple samples into each final output bit, resulting in a random bit stream that is practically free from bias and correlation"

Gniibe

\$\$, environment noise, $3 \mathrm{mbits} / \mathrm{s}$, access to raw bits, open source (based on GNU microprocesssor unit), whitening=CRC32 + SHA-256

\$\$, electronic noise, $x \mapsto 2 x-1$ digitization, $300 \mathrm{kbits} / \mathrm{s}$, access to raw bits, whitening=SHA3

analysis of raw noise bits

	紋期

	拺
\＃\＃\＃\＃\＃\＃\＃\＃\＃3	\＃\＃\＃\＃\＃\＃\＃\＃

infinite noise：measured vs．model

Bitbabbler

\$\$-\$\$\$, electronic noise, $x \mapsto 2 x-1$ digitization, $2.5 \mathrm{mbits} / \mathrm{s}$ default, 4 independent generators ($\$ 150$ version), access to raw bits, variable discretization rate, whitening=XOR

Bitbabbler: changing rate

100 kHz

default rate 2.5 MHz

5 MHz

2 or3 XOR

TrueRNG

\$\$-\$\$\$, zener noise + ADC,
$3.2 \mathrm{mbits} / \mathrm{s}$, 2 independent generators ($\$ 100$ version), access to raw bits, whitening=XOR/CRC

TrueRNG raw noise

DIY approach

DIY: not all noise sources are the same

two zener diodes from the same roll

ID Quantique

\$\$\$-\$\$\$, photon detectors, 4 mbits $/ \mathrm{s}$, no access to raw bits, whitening?, additional randomness extraction available

ID Quantique: scheme

certificates as randomness theater?

still fails dieharder/ent tests (before optional randomness extractor)

security through obscurity

security through obscurity

- NIST recommends (and insists) on using cryptographic whitening

security through obscurity

- NIST recommends (and insists) on using cryptographic whitening
- "approved hash function"

security through obscurity

- NIST recommends (and insists) on using cryptographic whitening
- "approved hash function"
- nothing is proven about them

security through obscurity

- NIST recommends (and insists) on using cryptographic whitening
- "approved hash function"
- nothing is proven about them
- and even it were, it won't help

Hash_DRBG's [the random generator based on hash functions] security depends on the underlying hash function's behavior when processing a series of sequential input blocks. If the hash function is replaced by a random oracle, Hash_DRBG is secure. It is difficult to relate the properties of the hash function required by Hash_DRBG with common properties, such as collision resistance, pre-image resistance, or pseudorandomness.

vulnerabilities

vulnerabilities

- software attack if a microprocessor is used

vulnerabilities

- software attack if a microprocessor is used - undetected failure of noise source

vulnerabilities

- software attack if a microprocessor is used
- undetected failure of noise source
- whitening obscures failures

vulnerabilities

- software attack if a microprocessor is used
- undetected failure of noise source
- whitening obscures failures
- obscure hash function as a Troyan horse

vulnerabilities

- software attack if a microprocessor is used
- undetected failure of noise source
- whitening obscures failures
- obscure hash function as a Troyan horse
- distribution close to random but still distinguishable

vulnerabilities

- software attack if a microprocessor is used
- undetected failure of noise source
- whitening obscures failures
- obscure hash function as a Troyan horse
- distribution close to random but still distinguishable
- last but not least: stupid errors (e.g., AMD Zen FF random generator)

random bits in practice and theory

- paranoid mode on

remedies

remedies

- xor of independent devices

remedies

- xor of independent devices
- possible to make in-house

remedies

- xor of independent devices
- possible to make in-house
- open source hardware/software
- xor of independent devices
- possible to make in-house
- open source hardware/software
- several reasonably cheap commercial generators, no need for a fancy one
- xor of independent devices
- possible to make in-house
- open source hardware/software
- several reasonably cheap commercial generators, no need for a fancy one

THANKS!

