Admissibles and computations

Bruno Durand Grégory Lafitte

LIRMM - CNRS - Montpellier

GT Calculabilités - Nov 25-27, 2019

cars

2uelqu'un va-t-il prendre enfin la défense de linfini?

1. admissible ordinals?

Cantor a trouvé une loi d'engendrement de la multitude des nombres ordinaux finis et transfinis, il a trouvé une dynastie, celle des Aleph, et cela, à l'aide de deux principes seulement, l'un immanent (additif), l'autre transcendant (passage à la limite) : Cantor, législateur de l'infini.
-Sinisgalli, Horror vacui

$$
18.69
$$

$$
\begin{gathered}
f(\mathbf{x})=x_{i} \\
f(\mathbf{x})=x_{i} \backslash x_{j} \\
f(\mathbf{x})=\left\{x_{i}, x_{j}\right\} \\
f(\mathbf{x})=h(\mathbf{g}(\mathbf{x})) \\
f(y, \mathbf{x})=\bigcup_{z \in y} g(z, \mathbf{x})
\end{gathered}
$$

5

1

 \square

ordre sur ω
ordre sur ω vs ordre sur une partie de ω
(soit n est comparable à une infinité d'entiers, soit n est isolé)
si $\forall x\langle n, x\rangle=0$, alors soit n est le plus petit élément, soit il n'est pas dans l'ordre. si de plus $\forall x\langle x, n\rangle=0$ alors x n'est pas dans l'ordre

Equivalence class of well-orderings by isomorphism
Transitive set well-ordered by \in
Ordinals + transfinite induction
measuring of provability strength
Levels of constructibility L_{α}
Coding infinite ordinals
An ordinal is recursive if it has a recursive coding on ω
If α has a recursive coding on $E \subset \omega$ then it is recursive
A code for $\beta<\alpha$ extracted from a code for α

Admissib/e ordinals

closed enough ordinals

limit, limit of limits, etc

Admissible or dinals

closed enough ordinals

limit, limit of limits, etc ω_{1}^{CK} is the sup of the recursive ordinals

Σ_{0}-separation:
for any set E, Σ_{0} formula ϕ,
there exists $X \subseteq E$ such that

$$
x \in X \Longleftrightarrow \phi(x)
$$

5

Σ_{0}-collection:

for any Σ_{0} formula $\phi(x, y)$ s.t.
$\forall x \exists y \phi(x, y)$, we have that $\forall X \exists E$
s.t. $[e \in E \Longleftrightarrow \exists x \in X \phi(x, e)]$
union
Σ_{0}-separation
Σ_{0}-collection
Σ_{0}-separation:
for any set E, Σ_{0} formula ϕ,
there exists $X \subseteq E$ such that

$$
x \in X \Longleftrightarrow \phi(x)
$$

closed enough ordinals

 ω_{1}^{cK} is the sup of the recursive ordinalsα is admissible if L_{α} is a model of KP
α is admissible if limit and $L_{\alpha} \models \Sigma_{0}$-collection
induction empty set
union
Σ_{0}-separation
Σ_{0}-collection
ion

Σ_{0}-collection:

for any Σ_{0} formula $\phi(x, y)$ s.t.
$\forall x \exists y \phi(x, y)$, we have that $\forall X \exists E$
s.t. $[e \in E \Longleftrightarrow \exists x \in X \phi(x, e)]$
limit, limit of limits, etc

closed enough ordinals

limit, limit of limits, etc ω_{1}^{CK} is the sup of the recursive ordinals
α is admissible if L_{α} is a model of KP

Σ_{0}-collection:

for any Σ_{0} formula $\phi(x, y)$ s.t.
$\forall x \exists y \phi(x, y)$, we have that $\forall X \exists E$
s.t. $[e \in E \Longleftrightarrow \exists x \in X \phi(x, e)]$
induction empty set
union
Σ_{0}-separation
Σ_{0}-collection
Σ_{0}-separation:
for any set E, Σ_{0} formula ϕ,
there exists $X \subseteq E$ such that $x \in X \Longleftrightarrow \phi(x)$

closed enough ordinals

 ω_{1}^{CK} is the sup of the recursive ordinalsα is admissible if L_{α} is a model of KP
α is admissible if limit and $L_{\alpha} \models \Sigma_{0}$-collection
unreachable in a Σ_{1} way from below
$\omega_{1}^{\mathrm{CK}, r}$ is admissible for every real r

Σ_{0}-collection:

for any Σ_{0} formula $\phi(x, y)$ s.t.
$\forall x \exists y \phi(x, y)$, we have that $\forall X \exists E$
s.t. $[e \in E \Longleftrightarrow \exists x \in X \phi(x, e)]$
extensionality
induction
empty set
KP
pairing
union
Σ_{0}-separation

$$
\Sigma_{0} \text {-collection }
$$

limit, limit of limits, etc
2. gaps?

ITTMs, clockable ordinals, gaps.

ITTM: clockable ordinals and gaps

Infinite time Turing machines (ITTM) lim sup special limit state
head limit behaviour can compute on reals

ITTM: clockable ordinals and gaps

ITTMs are extensions of Turing machines to transfinite time.
For simplicity: alphabet $\{0,1\}$
Ordinal stages

- successor ordinals: it works exactly as a Turing machine
- limit ordinals: each cell is set to the lim sup of its values, head is rewinded back to the origin and the machine enters a special limit state L

3 tapes: input, scratch, output
A real (infinite binary string) can be considered as input (oracle computation) and output
Example: a coding of an ordinal may be written, or taken as input by an ITTM

ITTM: clockable ordinals and gaps

Infinite time Turing machines (ITTM) lim sup special limit state
head limit behaviour can compute on reals α countable is writable if r_{α} is

ITTM: clockable ordinals and gaps

Infinite time Turing machines (ITTM)

Any recursive ordinal α can be finitely represented by a Turing Machine μ such that $\mu(i)=r_{\alpha}(i)$
Among these TM we choose one (e.g. of smallest index) $\alpha \mapsto \mu_{\alpha}$
Our order (partial) : $\mu_{\alpha} \prec \mu_{\beta} \Longleftrightarrow \alpha<\beta$
This order \prec is not recursive and is of type ω_{1}^{CK}
This order does not exhibit a recursive minimality - we will improve it using ITTMs

ITTM: clockable ordinals and gaps

Infinite time Turing machines (ITTM)
lim sup special limit state head limit behaviour can compute on reals α countable is writable if r_{α} is α countable is clockable if \exists ITTM
which halts exactly after α many steps

ITTM: clockable ordinals and gaps

Infinite time Turing machines (ITTM)
lim sup special limit state head limit behaviour can compute on reals α countable is writable if r_{α} is α countable is clockable if \exists ITTM
which halts exactly after α many steps

$$
\lambda_{\infty}=\text { sup of writables } \quad \gamma_{\infty}=\text { sup of clockables }
$$

[^0]

ITTM: clockable ordinals and gaps

Infinite time Turing machines (ITTM)
lim sup special limit state head limit behaviour can compute on reals
α countable is writable if r_{α} is
α countable is clockable if \exists ITTM
which halts exactly after α many steps
$\lambda_{\infty}=$ sup of writables
$\gamma_{\infty}=$ sup of clockables eventually writable ordinals accidentally writable ordinals

[^1]$\zeta_{\infty}=$ sup
$\Sigma_{\infty}=$ sup

ITTM: clockable ordinals and gaps

Infinite time Turing machines (ITTM)
lim sup special limit state head limit behaviour can compute on reals α countable is writable if r_{α} is α countable is clockable if \exists ITTM which halts exactly after α many steps $\lambda_{\infty}=$ sup of writables $\gamma_{\infty}=$ sup of clockables eventually writable ordinals accidentally writable ordinals

$$
\begin{aligned}
& \zeta_{\infty}=\sup \\
& \Sigma_{\infty}=\text { sup }
\end{aligned}
$$

There are non-clockable writable ordinals

Clockable ordinals and gaps

Admissibles are not clockable

$1]^{2}=$

Clockable ordinals and gaps

Admissibles are not clockable
 ω_{1}^{CK} starts a gap of length ω

Clockable ordinals and gaps

Admissibles are not clockable

$$
\omega_{1}^{\mathrm{CK}} \text { starts a gap of length } \omega
$$

A gap length is a limit ordinal

Clockable ordinals and gaps

Admissibles are not clockable

$$
\omega_{1}^{\mathrm{CK}} \text { starts a gap of length } \omega
$$

A gap length is a limit ordinal
$\gamma_{\infty}=\lambda_{\infty}$

Clockable ordinals and gaps

Admissibles are not clockable
ω_{1}^{CK} starts a gap of length ω
A gap length is a limit ordinal
$\gamma_{\infty}=\lambda_{\infty}$
There are large gaps

Clockable ordinals and gaps

Admissibles are not clockable
ω_{1}^{CK} starts a gap of length ω
A gap length is a limit ordinal
$\gamma_{\infty}=\lambda_{\infty}$
There are large gaps

Clockable ordinals and gaps

Admissibles are not clockable
ω_{1}^{CK} starts a gap of length ω
A gap length is a limit ordinal
$\gamma_{\infty}=\lambda_{\infty}$
There are large gaps
A gap starts by an admissible ordinal
How are gaps distributed?

Clockable ordinals and gaps

Admissibles are not clockable
ω_{1}^{CK} starts a gap of length ω
A gap length is a limit ordinal
$\gamma_{\infty}=\lambda_{\infty}$
There are large gaps
A gap starts by an admissible ordinal
How are gaps distributed?
Is there a link between a gap's size and its starting point?

Clockable ordinals and gaps

Admissibles are not clockable
ω_{1}^{CK} starts a gap of length ω
A gap length is a limit ordinal
$\gamma_{\infty}=\lambda_{\infty}$
There are large gaps
A gap starts by an admissible ordinal
How are gaps distributed?
Is there a link between a gap's size and its starting point?
Is there a gap with exactly one admissible ordinal properly inside?

Clockable ordinals and gaps

Σ
0
γ_{∞}

Is there a link between a gap's size and its starting point? Is there a gap with exactly one admissible ordinal properly inside?
3. a gap with exactly one admissible

One admissible

One admissible

One admissible

There are many admissible ordinals between the sup of writables λ_{∞} and $\zeta_{\infty}<\Sigma_{\infty}$.

$$
\exists \alpha<\beta<\gamma \text { s.t. } \beta \text { adm. and } L_{\gamma} \text { witnesses }[\alpha, \beta) \text { contains no clockable }
$$

© This is a Σ_{1} statement, verified in $L_{\Sigma_{\infty}}$, and thus also in $L_{\lambda_{\infty}}$. Let $\alpha, \beta, \gamma<\lambda_{\infty}$ witness this. L_{γ} β believes that β is an admissible ordinal properly inside a gap.
Since any ITTM-computation on the empty input of length $<\beta$ is already contained in $L_{\beta},[\alpha, \beta)$ is indeed inside a gap which properly contains the admissible ordinal β.

One admissible

Design an algorithm that checks if a real x is a code for an ordinal which is the starting point of a gap containing $\omega_{1}^{\mathrm{CK}, x}$.
This algorithm accepts any code for λ_{∞}.

There is an x that is accepted by this algorithm
is a Σ_{1} statement.
By the $\lambda-\zeta-\Sigma$ theorem, we have a witness of this property in $L_{\lambda_{\infty}}$, which has to be the code of an admissible ordinal $<\lambda_{\infty}$ beginning a gap with an admissible properly inside.

One admissible

One admissible

Algorithm :

Primary gap detection : we run a universal online-simulation of all ITTM in order to detect gaps. We thus observe gaps ω steps after their starting point.

At each starting points α we have at our disposal a coding of α.
We then start a secondary gap detection with oracle α until either :

- the primary gap ends; we then stop secondary detection - we continue the primary detection until next gap
- the first secondary gap is observed; we then halt.

Proof :

If no admissible inside a gap, then it halts after λ_{∞}. Contradiction.
Halting time: $\alpha+\omega_{1}^{\mathrm{CK}, \alpha}+\omega=\omega_{1}^{\mathrm{CK}, \alpha}+\omega$. Hence this is the end of the gap.
4. beyond one admissible

Several admissibles, ranks, large gaps

Several admissibles, ranks, large gaps

The first gap with at least $n<\omega$ admissibles inside will only have n admissibles inside, and ends ω steps after the last one

Direct adaptation of previous proof

$$
\text { Gap : }\left[\alpha_{0}, \ldots, \alpha_{1}, \ldots, \ldots, \ldots, \alpha_{n}\right]
$$

Computation of ω_{1}^{CK} relativized to detect the next admissible :

$$
\alpha_{i+1}=\omega_{1}^{\mathrm{CK}, \alpha_{i}}
$$

Several admissibles, ranks, large gaps

Several admissibles, ranks, large gaps

The first gap with at least $n<\omega$ admissibles inside will only have n admissibles inside, and ends ω steps after the last one
($\alpha<\lambda_{\infty}$) After the writing time for α, the first gap with at least α admissibles inside has exactlv α inside

Not a direct adaptation of previous proof because of limits of admissibles

Problem: if $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}, \ldots \rightarrow \alpha_{\omega}$ then sometimes α_{ω} is admissible (recursively inaccessible) and sometimes not.

Several admissibles, ranks, large gaps

Several admissibles, ranks, large gaps

The first gap with at least $n<\omega$ admissibles inside will only have n admissibles inside, and ends ω steps after the last one
($\alpha<\lambda_{\infty}$) After the writing time for α, the first gap with at least α admissibles inside has exactly α inside

Ranks
rank-0: admissibles rank- $\alpha+1$: admissible limits of rank α adm. rank- λ : adm. limits of rank β adm. $\forall \beta<\lambda$

Let $\alpha<\lambda_{\infty}$. After the writing time for α, the first gap starting with a rank- α admissible is of size ω

Several admissibles, ranks, large gaps

The first gap with at least $n<\omega$ admissibles inside will only have n admissibles inside, and ends ω steps after the last one
($\alpha<\lambda_{\infty}$) After the writing time for α, the first gap with at least α admissibles inside has exactly α inside

Ranks
rank-0: admissibles rank- $\alpha+1$: admissible limits of rank α adm. rank- λ : adm. limits of rank β adm. $\forall \beta<\lambda$

Let $\alpha<\lambda_{\infty}$. After the writing time for α, the first gap starting with a rank- α admissible is of size ω

The smallest $\alpha=$ its rank starts a gap of size ω

Several admissibles, ranks, large gaps

The first gap with at least $n<\omega$ admissibles inside will only have n admissibles inside, and ends ω steps after the last one
($\alpha<\lambda_{\infty}$) After the writing time for α, the first gap with at least α admissibles inside has exactly α inside

Ranks
rank-0: admissibles rank $-\alpha+1$: admissible limits of rank α adm. rank- λ : adm. limits of rank β adm. $\forall \beta<\lambda$

Let $\alpha<\lambda_{\infty}$. After the writing time for α, the first gap starting with a rank- α admissible is of size ω

The smallest $\alpha=$ its rank starts a gap of size ω
Let $f: \omega_{1} \rightarrow \omega_{1}$ be ITTM-computable. Then there is an ordinal α starting a gap of size $\geqslant f(\alpha)$

Several admissibles, ranks, large gaps

The first gap with at least $n<\omega$ admissibles inside will only have n admissibles inside, and ends ω steps after the last one
($\alpha<\lambda_{\infty}$) After the writing time for α, the first gap with at least α admissibles inside has exactly α inside

Ranks
rank-0: admissibles rank- $\alpha+1$: admissible limits of rank α adm. rank- λ : adm. limits of rank β adm. $\forall \beta<\lambda$

Let $\alpha<\lambda_{\infty}$. After the writing time for α, the first gap starting with a rank- α admissible is of size ω

The smallest $\alpha=$ its rank starts a gap of size ω
Let $f: \omega_{1} \rightarrow \omega_{1}$ be ITTM-computable. Then there is an ordinal α starting a gap of size $\geqslant f(\alpha)$

5. sacks' characterizations of admissible ordinals

Il y a en nous une sensation finie de «linfini》. Etce nest quiun effet - une conséquence. Ce nést pas une preuve de quoi que ce soit. -Paul Valéry, r9Io

Characterizations of admissibles

Characterizations of admissibles

Characterizations of admissibles

simulation of all ITTM's ω-online

ω machines halt for a given simulation time, we choose the first one in the simulation
$\mu \prec \nu \Longleftrightarrow(\mu$ and v are chosen and μ halts before $v)$
if we run the above process up to α we get an order for all clockables before α

$$
\text { first run of } \omega \text { non clockables } \Longrightarrow \omega_{1}^{\mathrm{CK}}
$$

the order type of clockables below a gap is exactly the starting point of the gap
same with oracle (or input)
in some sense these are the simplest codings

Characterizations of admissibles

6. building up to a proof

2ui est là? Ab très bien : faites entrer limfini.
-Aragon, Une vague de rêves, 1924

The first steps

The first steps

Successor admissible case

$\alpha=\beta^{+}$(α and β are admissible)
Code β in a real r to obtain $\omega_{1}^{\mathrm{CK}, r}=\alpha$

The first steps

The first steps

Successor admissible case

If r_{β} codes an ordinal $\beta, \omega_{1}^{\mathrm{CK}, r_{\beta}} \geqslant \beta^{+}$
We have to make sure that r does not code more...

The first steps

Successor admissible case

If r_{β} codes an ordinal $\beta, \omega_{1}^{\mathrm{CK}, r_{\beta}} \geqslant \beta^{+}$
We have to make sure that r does not code more...
Find the lowest simplest code

The first steps

(Q)

Successor admissible case
If coding level of r_{β} is $<\beta^{+}$, we have equality and everything works.
Otherwise, we need to do something a little bit more sophisticated.
Find the lowest simplest code

The first steps

Successor admissible case

If r_{β} codes an ordinal $\beta, \omega_{1}^{\mathrm{CK}, r_{\beta}} \geqslant \beta^{+}$
We have to make sure that r does not code more...
Find the lowest simplest code
Recursively inaccessible case

a

The first steps

(Q) Successor admissible case

If r_{β} codes an ordinal $\beta, \omega_{1}^{\mathrm{CK}, r_{\beta}} \geqslant \beta^{+}$
We have to make sure that r does not code more...
Find the lowest simplest code
Recursively inaccessible case
Limit of the ω first admissibles is not admissible

The first steps

(Q) Successor admissible case

If r_{β} codes an ordinal $\beta, \omega_{1}^{\mathrm{CK}, r_{\beta}} \geqslant \beta^{+}$
We have to make sure that r does not code more...
Find the lowest simplest code
Recursively inaccessible case
Limit of the ω first admissibles is not admissible
One can build an ITTM which halts at exactly that limit

The first steps

(2)

Successor admissible case

If r_{β} codes an ordinal $\beta, \omega_{1}^{\mathrm{CK}, r_{\beta}} \geqslant \beta^{+}$
We have to make sure that r does not code more...
Find the lowest simplest code
Recursively inaccessible case
Limit of the ω first admissibles is not admissible
One can build an ITTM which halts at exactly that limit
Consider the first recursively inaccessible l_{0}

The lost lemma

The lost lemma

The lost lemma

r needs to code the r_{i} 's but in such a way that $\forall i, r_{i}$ can be computed from r but not uniformly.
r is a mapping from ω^{2} to $\{0,1\}$ that contains r_{i} in the $\mathfrak{b}(i)$ column.
We ensure that $\bigoplus_{i} r_{i} \not{ }_{T} r$ by adding the needed information to hide the r_{i} 's.
r is constructed as $\bigcup_{i} o_{i}$ where the o_{i} 's are compatible oracles that represent the left part of r up to column $\mathfrak{b}(i)$

We assume that o_{i} has been built and that we know $\mathfrak{b}(i)$, and we give the construction for o_{i+1} and $\mathfrak{b}(i+1)$.

The lost lemma

Consider all $\varphi_{i}^{\tau}(\langle i+1, j\rangle)$ computations for every j and every finite extension τ of o_{i}.

Look for the first (τ, j) such that it either (i) converges and is $\neq r_{i+1}(j)$, or (ii) for every extension of τ, it diverges.
$\mathfrak{b}(i+1)$ is then taken to be greater than [case (i)] the maximum between $\mathfrak{b}(i)$ and the greatest column reached during the computation, [case (ii)] the greatest column reached in the enumeration of the extensions of o_{i}; which is the column from which every extension will make the computation diverge on j.

The lost lemma

ACADÉMIE DES SCIENCES.

So Repuhlicn Argentina. Publicaciones de la Comision nacional de la energia

Il signale également un fascicule polycopié : Contribution du Laboratoire d^{\prime} astronomie de titte, $\mathrm{n}^{0} 2$. Numero special, à leccasion du Coltoqu
tional de Liége sur Les particules solides dans les objets astronomiques.

Arithmétique. - Sur le semi-réseaul constitué par les degrés d'indécidabilité récursive. Note (*) de M. Daniel Lacombe, présentée par M. Émile Borel

Extension de certains résultats de Kleene et Post (') et solution de quelques questions posées par ces auteurs (${ }^{2}$).

Nous utiliserons dans ce qui suit les définitions et les notations de S. C. Kleene-E. L. Post (${ }^{1}$). Nous désignerons par D l'ensemble des degrés d'indécidabilité (ou, pour abréger : degrés) et par \mathbf{D}_{A} l'ensemble des degrés arithmétiques $\left(D_{A} \subset D\right)$. D et D_{A} sont munis d'une relation d'ordre partiel (notée $<$ et \leqslant) et d'une opération $a \rightarrow a^{\prime}$ partout définie (nous désignerons par $a^{i h}$ le résultat de cette opération itérée i fois à partir de a).
Les deux théorèmes suivants se démontrent au moyen des méthodes classiques (fondées essentiellement sur la forme normale de Kleene) complétées par l'utilisation de fonctions majorantes. Les conditions (A) et (B) du théorème I constituent deux cas particuliers d'une condition plus générale que nous ne pouvons énoncer ici, et qu'il serait d'ailleurs intéressant d'élargir.
Theorgan I. - Soit $\mathrm{S}=u_{0}, u_{1}, \ldots, u_{n}, \ldots$ une suite infinie de degrés, strictement croissante (c'est-i- -dire telle que $i<j$ entraine $u_{i}<u_{j}$) et satisfaisant à l'une ou l'autre des conditions suivantes :
(A) il existe un degré a tel que, pour tout $i, u_{i}=a^{(i)}$:
(B) il existe un degré b tel que, pour tout $i, b<u_{i}<b^{\prime}$.

Soit U l'ensemble de degrés défini par la condition :

[^2] encore, à notre connaissance, été publiés.
(1) pour tout degré x, on a
$$
\left(x \leq d_{1} e t x \leq d_{4}\right) \Leftrightarrow x \in \mathrm{U}_{;}
$$

(2) c ne vérifie aucune des deux inégalités

Remarque 1. - Ce théorème montre que S (ou, ce qui revient au mème, U) ne possède pas de borne supérieure précise.

Remarque 2. - La relation ($\mathbf{1}$) montre que le couple $\left(d_{1}, d_{3}\right)$ ne possède pas de borne inférieure précise. De l'existence de suites S satisfaisant à (A) ou (B) on déduit donc immédiatement que \mathbf{D} ne constitue pas un réseau [résultat démontré par Kleene et Post au moyen d'une suite de type (A)].

Remarque 3. - Kleene et Post ont montré l'existence de suites S satisfaisant à la condition (B), et cela pour n'importe quel degré b. Lorsque, dans cette hypothèse ($\mathbf{B})$, le degré b appartient à \mathbf{D}_{A}, il en est de même pour b^{\prime} et pour tous les u_{i} (et l'on a $\mathrm{U} \subset \mathbf{D}_{A}$). Cela n'entraine pas forcément que d_{1} et d_{2} puissent être pris eux aussi dans \mathbf{D}_{A}. La relation (1) montre en effet que l'ensemble U est entièrement déterminé par la donnée de d_{1} et d_{2}. Or D_{A} est dénombrable (donc aussi l'ensemble des couples formés de deux degrés arithmétiques). Mais Kleene et Post ont montré que les ensembles tels que U, déterminés dans D_{λ} par des suites S de \mathbf{D}_{A} croissantes et satisfaisant à (B) (avec b dans \mathbf{D}_{A}), forment une famille ayant la puissance du continu. Il en résulte que pour certaines de ces suites il n'existe aucun couple (d_{1}, d_{2}) formé de degrés arithmétiques et satisfaisant à la relation (I). Le théorème suivant donne une condition suffisante pour l'existence d'un tel couple.

Étant donnée une suite de degrés quelconque $\mathrm{S}=u_{0}, u_{1}, \ldots, u_{n}, \ldots$ et une fonction φ de deux variables (entières ≥ 0), nous dirons que φ énumère S si, pour tout i, la fonction d'une variable Φ_{i} définie par $\varphi_{i}(x)=?(i, x)$ est de degré u_{i}.

Theoreme II. - Si, dans le théorème I-hypothèse (B), le degré b est arithmétique et si la suite S peut être enumérée par une fonction arithmétique, alors les degrés d_{1} et d_{2} satisfaisant aux relations (1) et (2) peupent être pris (d'une infinité

Remarque 3. - Les méthodes de Kleene-Post permettent de déterminer des suites S satisfaisant aux conditions de ce théorème II. Il en résulte que \mathbf{D}_{A} ne constitue pas un réseau.

7 So Repuhlice Argentina. Publicaciones de la Comision nacional de la energia $^{\circ}$ ato ni a. ग isce.a \& n^{\prime}.
(1) pour tout degré x, on

$$
\left(x \leq d_{1} \text { et } x \leq d_{2}\right) \Leftrightarrow x \in \mathrm{U} ;
$$

Il signale également un fascicule polycopié : Contribution du Laboratoire astronomie de Litte, n° tional de Liége sur Les

ARITHMÉTIQUE. dabilité récursipe M. Émile Bore!

Extension de certair questions posées par ce

Nous utiliserons da S. C. Kleene-E. L. Po d'indécidabilité (ou, pr arithmétiques ($D_{A} \subset D$ (notée $<$ et \leqslant) et d'u par $a^{i n}$ le résultat de ce
Les deux théorèmes siques (fondées essenti par l'utilisation de fon rème I constituent det nous ne pouvons énonc
Theorlage I. - Soit S ment croissante (c'est-i-i-1 ou l'autre des conditions
(A) il existe un deg7
(B) il existe un degri Soit U l'ensemble de

Soit d'autre part un d Dans ces conditions, 0 d_{1} et d_{2} satisfaisant aux

() Séance du 27 octobre 1954
(1) Ann. Math., 59, 1954, p. 379-407
(2) Ces questions sont en général indiquées, dans l'article cité ci-dessus, par le signe : ${ }^{2}$
lequel renvoie à une Note de la page 380. Les résultats annoncés dans cette Note n'ont pas
encore, à notre connaissance été publié.

Remarque 3. - Les méthodes de Kleene-Post permettent de déterminer des suites S satisfaisant aux conditions de ce théorème II. Il en résulte que \mathbf{D}_{A} ne constitue pas un réseau.

ON DEGREES OF RECURSIVE UNSOLVABILITY*

By Clifford Spector

(Received August 8, 1955)
In Kleene-Post [4] ${ }^{1}$ a number of questions concerning the structure of the upper semi-lattice of degrees were left unanswered. The present paper contains the answers to those questions under the scope of [4] Footnote 3. With the exception of the density problem ([4], 2.2), the methods used are variations of those developed $\mathrm{in}_{[}[4]$. The construction employed in showing that the degress are not
 result of this pape (Theorem 4) that there are minhmal deghees of recursive unsolvability. ${ }^{2}$ Familiarity with [4] is assumed. ${ }^{3}$

the Mostilemma

CLIFFORD SPECTER,

 MATHEMATICIAN, 30
Special to The New York Times

PRINCETON, N, J. July 29-
Dr. Clifford Spector, Associate Professor of Mathematics at the University of Michigan, died to day of a cerebral hemorrhage at
Princeton Hospital. He was 30 years old.
Dr. Spector, who had been doing research on a year's leave at the Institute of Defense Analysis here, lived at 327 Wal nut Lane.
He previously had taught mathematics at the Ohio State
University for five years and University for five years and
was an editor of the Journal of Symbolic Logic, a mathematics periodical.
Dr. Specter graduated from Columbia College, where he was elected to Phi Beta Kappa. He held a Master of Arts degree
from Columbia and a doctorate from Columbia and a doctorate
from the University of Wis. from the
consing.
In
In 1959 he was one of ten United States mathematicians ference on symbolic logic at the Warsaw Academy of Science. R Last year he did mathematical research at the Institute for Advance Studies here.
He leaves his wife, the former Lea Eisner; two children, Alan \& and Judith: his parents, Mr. and 50 York, and a brother Gilbert, Tofesisot of Music a: Kansas State College.
\qquad
\qquad Manic a: Kansas

\mathbf{a} and \mathbf{b} form an exact pair for a degree set \mathcal{C} if both are above all degrees in \mathcal{C} any degree below both is also below some degree in \mathcal{C}

The Chapel
Of The Four
Chaplains, in the spirit of the selfies men tho act
as is inspiration, is dedicated to serving people of all faiths.
lever way in which we serve is aided by the most modern methods available: combined with the old-lasthoned virtues of courtesy and dignity!.

Illien you choose Universal, you select men and women who are sincerely interested in you and who are prepared lo give you their very hest efforts. This is what you have
a right to expect. This is what you have men and wore r you get at Universal.
\qquad ${ }_{j}$

 为

Nay $5+\frac{1+2}{9}$ universal

Hate Mostitenma

The recursively inaccessible case

The recursively inaccessible case

The recursively inaccessible case

The recursively inaccessible case

 $\frac{-2}{-2}$

manitiantir 1

Putnam/definability gaps

There are arbitrarily long gaps in L where no news reals appear
 Putnam gaps

Putnam/definability gaps

There are arbitrarily long gaps in L where no news reals appear Putnam gaps
Let $\beta>\alpha$ be countable ordinals such that there is an elementary embedding $j: L_{\beta} \rightarrow L_{\omega_{2}}$ with critical point $\operatorname{cr}(j) \geqslant \alpha$.
For every $\gamma<c r(j)$,
$L_{\omega_{2}} \models$ "No new reals appear between ranks ω_{1} and $\omega_{1}+\gamma$."
No new reals thus appear between $\operatorname{cr}(j)$ and $c r(j)+\gamma$, by elementarity and absoluteness.

Putnam/definability gaps

There are arbitrarily long gaps in L where no news reals appear Putnam gaps

If new reals appear at $\alpha+1$, then among them is an arithmetical copy E_{α} of L_{α}
E_{α} is an arithmetical copy of L_{α} if there is one-one function f from L_{α} to ω (and onto the field of E_{α}) such that $\forall x, y \in L_{\alpha}$,
$x \in y \Longleftrightarrow\langle f(x), f(y)\rangle \in E_{\alpha}$

Putnam/definability gaps

There are arbitrarily long gaps in L where no news reals appear Putnam gaps

If new reals appear at $\alpha+1$, then among them is an arithmetical copy E_{α} of L_{α}

Later seen as Jensen's mastercodes

Putnam/definability gaps

There are arbitrarily long gaps in L where no news reals appear Putnam gaps

If new reals appear at $\alpha+1$, then among them is an arithmetical copy E_{α} of L_{α}
Later seen as Jensen's mastercodes
r is a master code for \mathcal{J}_{ξ} if

$$
\left\{x \subseteq \omega: x \leqslant_{T} r\right\}=\mathcal{J}_{\xi+1} \cap \mathcal{P}(\omega) .
$$

$\mathcal{J}_{0}=\varnothing, \mathcal{J}_{\omega \cdot \varepsilon}=L_{\varepsilon}, \mathcal{J}_{\omega \cdot \varepsilon+n}=$ $\Delta_{n}\left(L_{\xi}\right)$, where λ is a limit ordinal and $\Delta_{n}(X)$ is the set of all subsets of X definable with parameters in $\langle x, \in\rangle$ by both Σ_{n} and Π_{n} first order formulae.

Putnam/definability gaps

There are arbitrarily long gaps in L where no news reals appear Putnam gaps

If new reals appear at $\alpha+1$, then among them is an arithmetical copy E_{α} of L_{α}
Later seen as Jensen's mastercodes
r is a master code for \mathcal{J}_{ξ} if

$$
\left\{x \subseteq \omega: x \leqslant_{T} r\right\}=\mathcal{J}_{\xi+1} \cap \mathcal{P}(\omega) .
$$

New reals appear at level ξ for \mathcal{J} iff there is a master code for ξ. Furthermore, if r is a master code for ξ, then r^{\prime} is the master code for $\xi+1$.

Putnam/definability gaps

There are arbitrarily long gaps in L where no news reals appear Putnam gaps

If new reals appear at $\alpha+1$, then among them is an arithmetical copy E_{α} of L_{α}

Later seen as Jensen's mastercodes
r is a master code for \mathcal{J}_{ξ} if

$$
\left\{x \subseteq \omega: x \leqslant_{T} r\right\}=\mathcal{J}_{\xi+1} \cap \mathcal{P}(\omega) .
$$

New reals appear at level ξ for \mathcal{J} iff there is a master code for ξ. Furthermore, if r is a master code for ξ, then r^{\prime} is the master code for $\xi+1$.

There are countable ordinals α, v such that α is not definable in L_{v}
E_{α} is an arithmetical copy of L_{α} if there is one-one function f from L_{α} to ω (and onto the field of E_{α}) such that $\forall x, y \in L_{\alpha}$,
$x \in y \Longleftrightarrow\langle f(x), f(y)\rangle \in E_{\alpha}$
$\mathcal{J}_{0}=\varnothing, \mathcal{J}_{\omega \cdot \xi}=L_{\xi}, \mathcal{J}_{\omega \cdot \xi+n}=$ $\Delta_{n}\left(L_{\xi}\right)$, where λ is a limit ordinal and $\Delta_{n}(X)$ is the set of all subsets of X definable with parameters in $\langle X, \in\rangle$ by both Σ_{n} and Π_{n} first order formulae.

Putnam/definability gaps

There are arbitrarily long gaps in L where no news reals appear Putnam gaps

If new reals appear at $\alpha+1$, then among them is an arithmetical copy E_{α} of L_{α}
E_{α} is an arithmetical copy of L_{α} if there is one-one function f from L_{α} to ω (and onto the field of E_{α}) such that $\forall x, y \in L_{\alpha}$,
$x \in y \Longleftrightarrow\langle f(x), f(y)\rangle \in E_{\alpha}$

There exists α such that $L_{\alpha} \prec L_{\omega_{1}}, \alpha$ is thus not definable in $L_{\omega_{1}}$.
There is a countable $v>\alpha$ such that $L_{v} \prec L_{\omega_{1}}$, and α is already not definable in L_{v}.
ivevv ieais appeai al Ievei civis il tieieis ailiasiel cule for ξ. Furthermore, if r is a master code for ξ, then r^{\prime} is the master code for $\xi+1$.

There are countable ordinals α, v such that α is not definable in L_{v}
$\langle X, \in\rangle$ by both Σ_{n} and Π_{n} first order formulae.

Putnam/definability gaps

There are arbitrarily long gaps in L where no news reals appear Putnam gaps

If new reals appear at $\alpha+1$, then among them is an arithmetical copy E_{α} of L_{α}

Later seen as Jensen's mastercodes
r is a master code for \mathcal{J}_{ξ} if

$$
\left\{x \subseteq \omega: x \leqslant_{T} r\right\}=\mathcal{J}_{\xi+1} \cap \mathcal{P}(\omega) .
$$

New reals appear at level ξ for \mathcal{J} iff there is a master code for ξ. Furthermore, if r is a master code for ξ, then r^{\prime} is the master code for $\xi+1$.

There are countable ordinals α, v such that α is not definable in L_{v}

We can characterize the least such definability gap
E_{α} is an arithmetical copy of L_{α} if there is one-one function f from L_{α} to ω (and onto the field of E_{α}) such that $\forall x, y \in L_{\alpha}$,
$x \in y \Longleftrightarrow\langle f(x), f(y)\rangle \in E_{\alpha}$
$\mathcal{J}_{0}=\varnothing, \mathcal{J}_{\omega \cdot \xi}=L_{\xi}, \mathcal{J}_{\omega \cdot \xi+n}=$
$\Delta_{n}\left(L_{\xi}\right)$, where λ is a limit ordinal and $\Delta_{n}(X)$ is the set of all subsets of X definable with parameters in $\langle X, \in\rangle$ by both Σ_{n} and Π_{n} first order formulae.

Putnam/definability gaps

There are arbitrarily long gaps in L where no news reals appear Putnam gaps

If new reals appear at $\alpha+1$, then among them is an arithmetical copy E_{α} of L_{α}
E_{α} is an arithmetical copy of L_{α} if there is one-one function f from L_{α} to ω (and onto the field of E_{α}) such that $\forall x, y \in L_{\alpha}$,
$x \in y \Longleftrightarrow\langle f(x), f(y)\rangle \in E_{\alpha}$

The ordinal v_{0}, which is the least v such that there is an ordinal α not definable in L_{v}, can be characterized as the least η such that there exists an ordinal $\delta<\eta$ such that $L_{\delta} \prec L_{\eta}$.

New reals appear at level ζ tor \mathcal{J} itt there is a master code for ξ. Furthermore, if r is a master code for ξ, then r^{\prime} is the master code for $\xi+1$.

There are countable ordinals α, v such that α is not definable in L_{v}

We can characterize the least such definability gap

[^3]
Putnam/definability gaps

v_{0} is clearly \leqslant the least such η, η_{0}, since whenever one has $L_{\alpha} \prec L_{\beta}, \alpha$ is not definable in L_{β}.

Now, suppose that $v_{0}<\eta_{0}$, in other words, for all $\delta<v_{0}, L_{\delta} \nprec L_{v_{0}}$. By Löwenheim-Skolem there is a countable elementary submodel of $L_{v_{0}}$. Take the \subseteq-least such model M. By the Condensation Lemma, there is an $\alpha<v_{0}$ and an isomorphism j such that the Mostowski collapse of M is isomorphic to L_{α} via j. j cannot be trivial as this would mean that $L_{\alpha} \prec L_{\delta}$, although $\delta<v_{0}$ and v_{0} is the least such ordinal. We can thus consider κ, the critical point of j. Since $L_{\alpha} \cong M \prec L_{v_{0}}, L_{k} \prec L_{j(\kappa)}$. But then κ cannot be definable in $L_{j(\kappa)}$, and thus $v_{0} \leqslant j(\kappa)$. But $j(\kappa)<v_{0}$, contradiction.

Definable/codable/countable

α definable at γ if definable without parameters in L_{γ} α codable at γ if appears in $L_{\gamma+1}$ a real coding α α countable at γ if $L_{\gamma} \models$ " α is countable".

Definable/codable/countable

α definable at γ if definable without parameters in L_{γ} α codable at γ if appears in $L_{\gamma+1}$ a real coding α α countable at γ if $L_{\gamma} \models$ " α is countable".
$\alpha<\omega_{1}^{L}$ is codable at some level if α is countable at β,
then α is codable and definable at β

Definable/codable/countable

α definable at γ if definable without parameters in L_{γ} α codable at γ if appears in $L_{\gamma+1}$ a real coding α α countable at γ if $L_{\gamma} \models$ " α is countable".
$\alpha<\omega_{1}^{L}$ is codable at some level if α is countable at β,
then α is codable and definable at β
For every countable ordinal α,
there exists a countable β s.t. α is definable at β

Definable/codable/countable

α definable at γ if definable without parameters in L_{γ} α codable at γ if appears in $L_{\gamma+1}$ a real coding α

Consider $K=\mathbb{N}_{\alpha} . \mathbb{K}$ is definable as the greatest cardinal in $L_{K^{+}}$.
(Here K^{+}denotes the least ordinal of cardinality greater than K .)
And thus α is also definable in $L_{\kappa^{+}}$.
Löwenheim-Skolem's theorem, in conjunction with Mostowski's lemma and the Condensation Lemma, provides the countable β such that α is definable in L_{β}.

Definable/codable/countable

α definable at γ if definable without parameters in L_{γ} α codable at γ if appears in $L_{\gamma+1}$ a real coding α α countable at γ if $L_{\gamma} \models$ " α is countable".
$\alpha<\omega_{1}^{L}$ is codable at some level if α is countable at β,
then α is codable and definable at β
For every countable ordinal α,
there exists a countable β s.t. α is definable at β
There exists an ordinal $\alpha<\omega_{1}^{L}$ which is definable at a β, then not definable at a $\beta^{\prime}>\beta$, etc

Definable/codable/countable

α definable at γ if definable without parameters in L_{γ} α codable at γ if appears in $L_{\gamma+1}$ a real coding α α countable at γ if $L_{\gamma} \models$ " α is countable".
$\alpha<\omega_{1}^{L}$ is codable at some level if α is countable at β,
then α is codable and definable at β
For every countable ordinal α,
there exists a countable β s.t. α is definable at β
There exists an ordinal $\alpha<\omega_{1}^{L}$ which is definable at a β, then not definable at a $\beta^{\prime}>\beta$, etc

There is an upper bound for the ordinals that remain definable from some point on

Definable/codable/countable

α definable at γ if definable without parameters in L_{γ}
Memorable ordinals: ordinals α for which there exists β such that for any countable $\gamma \geqslant \beta, \alpha$ is still definable at γ.

Any countable τ such that $L_{\tau} \prec L_{\omega_{1}}$ is such an upper bound: if α is definable at β, take δ above τ and β such that $L_{\delta} \prec L_{\omega_{1}}$. We then have $L_{\tau} \prec L_{\delta} \prec L_{\omega_{1}} . \alpha$ is thus definable at δ, since δ is above β, and also at τ. τ is therefore above α and any other definable ordinal. In fact, the least non-memorable ordinal τ_{0} is the least ordinal τ with uncountably many elementary extensions $L_{\tau} \prec L_{\gamma}$.
then not definable at a $\beta^{\prime}>\beta$, etc
There is an upper bound for the ordinals that remain definable from some point on

Codability

Codability
 y

$$
89
$$

Codability

The case of codability gaps

Successor admissible case

The case of codability gaps

Successor admissible case

$21 / \omega$

The case of codability gaps

Successor admissible case
 $$
\omega_{1}^{\mathrm{CK}, r_{\beta}} \geqslant \alpha \text { but } r_{\alpha} \not{ }_{T} r_{\beta} \text {, so } \omega_{1}^{\mathrm{CK}, r_{\beta}}=\alpha
$$

The case of codability gaps

Successor admissible case

$$
\omega_{1}^{\mathrm{CK}, r_{\beta}} \geqslant \alpha \text { but } r_{\alpha} \not{ }_{T} r_{\beta}, \text { so } \omega_{1}^{\mathrm{CK}, r_{\beta}}=\alpha
$$

Recursively inaccessible case

Everything happens in L_{γ}

where the first code for α appears
a 4.89
and
7. sacks' and jensen's theorems revisited

Est-il possible de raisonner sur des objets qui ne peuvent être défnis en un nombre fini de mots? Est-il possible même d'en parler en sachant de quoi l'on parle, et en prononçant autre chose que des paroles vides? Ou au contraire doit-on les regarder comme impensables? 乌yant à moi je n'hésite pas à répondre que ce sont de purs néants.
—Poincaré, La logique de l'infini, 1909

For every admissible $\alpha<\omega_{1}^{L}$, there exists a real r s.t. $\alpha=\omega_{1}^{\mathrm{CK}, r}$

For every admissible $\alpha<\omega_{1}^{L}$, there exists a real r s.t. $\alpha=\omega_{1}^{\mathrm{CK}, r}$

Optimality results concerning the degree of r

x
Hん

\％

促

7
Jehsen＇s generalization

－saeks anio jenseris ule oremis tevisueu
等为
\square

Sacks＇theorem but for a sequence of admissibles？

Sacks＇theorem but for a sequence of admissibles？

But we have to be careful with the hypothesis

，

or sequence of α admissible

compatibility with the sequence of the first admissibles？

infill il I if infin
 Ain

\square

$=$
\qquad

[^4]
compatibility with the sequ
men ce of the first admissibles？

Sacks＇theorem but for a sequence of admissibles？
But we have to be careful with the hypothesis
Compatibility hypothesis：having each member admissi－ ble relative to the initial segment

b－


```是
```

Sacks' theorem but for a sequence of admissibles?
Uehsen's generalization

$1+2 \sqrt{2}$
Sacks' theorem but for a sequence of admissibles?

Sacks' theorem but for a sequence of admissibles?
But we have to be careful with the hypothesis
Compatibility hypothesis: having each member admissible relative to the initial segment

$$
\begin{aligned}
& \left\langle\alpha_{\beta}: \beta<\gamma<\lambda_{\infty}\right\rangle \text { sequence of admissibles }<\omega_{1}^{L} \text { s.t. } \\
& \forall \delta<\gamma, \alpha_{\delta} \text { is admissible relative to }\left\{\alpha_{\beta}: \beta<\delta\right\} \\
& \exists r \text { s.t. } \alpha_{\beta} \text { is the } \beta \text {-th } r \text {-admissible } \\
& \text { Use of infinite time Turing machines in generalized lemma }
\end{aligned}
$$

Sacks＇theorem but for a sequence of admissibles？
${ }_{-0}^{\circ} \beta+1$－th in the sequence should not be decodable from r in $L_{\tau_{\beta}}$
Compatibility hypothesis：having each member admissi－ be relative to the initial segment

$$
\begin{aligned}
& \begin{array}{l}
\left\langle\alpha_{\beta}: \beta<\gamma<\lambda_{\infty}\right\rangle \text { sequence of admissibles }<\omega_{1}^{L} \text { s.t. } \\
\forall \delta<\gamma, \alpha_{\delta} \text { is admissible relative to }\left\{\alpha_{\beta}: \beta<\delta\right\} \\
\text { Jr st. } \alpha_{\beta} \text { is the } \beta \text {-th } r \text {-admissible } \\
\text { Use of infinite time Turing machines in generalized lemma }
\end{array} \text { }
\end{aligned}
$$

 8

[^0]: 2. gaps?
[^1]: 2. gaps?
[^2]: (*) Séance du 27 octobre 1954 .
 (1) Ann. Math., 59, 1954, p. $379-407$.
 ${ }^{(2)}$ Ces questions sont en général indiquées, dans l'article cité ci-dessus, par le signe : : ${ }^{2}$, lequel tenvoie à une Note de la page 380. Les résultats annoncés dans cette Note n'ont pas

[^3]: $\langle x, \in\rangle$ by both Σ_{n} and Π_{n} first order formulae.

[^4]: 2

