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Cantor a trouvé une loi d ’engendrement de la multitude des nombres or-
dinaux finis et transfinis, il a trouvé une dynastie, celle des Aleph, et cela,
à l’aide de deux principes seulement, l’un immanent (additif), l’autre tran-
scendant (passage à la limite) : Cantor, législateur de l’infini.

—Sinisgalli, Horror vacui
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Ordinals, a whole bunch of them

Equivalence class of well-orderings by isomorphismDE
F Equivalence class of well-orderings by isomorphismEquivalence class of well-orderings by isomorphism

Transitive set well-ordered by ∈DE
F Transitive set well-ordered by ∈Transitive set well-ordered by ∈

Ordinals + transfinite induction
measuring of provability strength

Ordinals + transfinite induction
measuring of provability strength

Ordinals + transfinite induction
measuring of provability strength

Levels of constructibility LαLevels of constructibility LαLevels of constructibility Lα

Coding infinite ordinalsCoding infinite ordinalsCoding infinite ordinals

An ordinal is recursive if it has a recursive coding onωDE
F An ordinal is recursive if it has a recursive coding onωAn ordinal is recursive if it has a recursive coding onω

If α has a recursive coding on E ⊂ ω then it is recursiveIf α has a recursive coding on E ⊂ ω then it is recursiveIf α has a recursive coding on E ⊂ ω then it is recursive

A code for β < α extracted from a code for αA code for β < α extracted from a code for αA code for β < α extracted from a code for α
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Admissible ordinals

closed enough ordinals limit, limit of limits, etcclosed enough ordinals limit, limit of limits, etcclosed enough ordinals limit, limit of limits, etc

ωCK
1 is the sup of the recursive ordinalsDE

F

ωCK
1 is the sup of the recursive ordinalsωCK
1 is the sup of the recursive ordinals

α is admissible if Lα is a model of KPDE
F

α is admissible if Lα is a model of KPα is admissible if Lα is a model of KP
KP
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Σ0-collection:
for any Σ0 formula ϕ(x, y) s.t.
∀x∃yϕ(x, y), we have that ∀X∃E
s.t. [e ∈ E ⇐⇒ ∃x ∈ Xϕ(x, e)]

Σ0-collection:
for any Σ0 formula ϕ(x, y) s.t.
∀x∃yϕ(x, y), we have that ∀X∃E
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Σ0-separation:
for any set E, Σ0 formula ϕ,
there exists X ⊆ E such that

x ∈ X ⇐⇒ ϕ(x)
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unreachable in a Σ1 way from belowunreachable in a Σ1 way from belowunreachable in a Σ1 way from below

ωCK,r
1 is admissible for every real r
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1 is admissible for every real r
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ITTMs are extensions of Turing machines to transfinite time.

For simplicity: alphabet {0, 1}

Ordinal stages

• successor ordinals: it works exactly as a Turing machine

• limit ordinals: each cell is set to the lim sup of its values, head is rewinded back to the
origin and the machine enters a special limit state L

3 tapes: input, scratch, output

A real (infinite binary string) can be considered as input (oracle computation) and output

Example: a coding of an ordinal may be written, or taken as input by an ITTM
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Any recursive ordinal α can be finitely represented by a Turing Machine µ such that µ(i) = rα(i)
Among these TM we choose one (e.g. of smallest index) α 7→ µα

Our order (partial) : µα ≺ µβ ⇐⇒ α < β

This order ≺ is not recursive and is of typeωCK
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This order does not exhibit a recursive minimality — we will improve it using ITTMs
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There are many admissible ordinals between the sup of writables λ∞ and ζ∞ < Σ∞.

∃α < β < γ s.t. β adm. and Lγ witnesses [α,β) contains no clockable

This is a Σ1 statement, verified in LΣ∞ , and thus also in Lλ∞ . Let α,β, γ < λ∞ witness this. Lγ
believes that β is an admissible ordinal properly inside a gap.

Since any ITTM-computation on the empty input of length < β is already contained in Lβ, [α,β)
is indeed inside a gap which properly contains the admissible ordinal β.

us
in
g
λ
-ζ
-Σ

The first gap with at least an admissible inside will only
have one admissible τ, and ends at τ+ωTH

M The first gap with at least an admissible inside will only
have one admissible τ, and ends at τ+ω

The first gap with at least an admissible inside will only
have one admissible τ, and ends at τ+ω

3. a gap with exactly one admissible 9/ω



One admissible

Lλ∞ ≺1 Lζ∞ ≺2 LΣ∞TH
M Lλ∞ ≺1 Lζ∞ ≺2 LΣ∞Lλ∞ ≺1 Lζ∞ ≺2 LΣ∞

There is a gap with at least one admissible inside

C
O
R There is a gap with at least one admissible insideThere is a gap with at least one admissible inside

Design an algorithm that checks if a real x is a code for an ordinal which is the starting point of a
gap containingωCK,x

1 .

This algorithm accepts any code for λ∞.

There is an x that is accepted by this algorithm

is a Σ1 statement.

By the λ − ζ − Σ theorem, we have a witness of this property in Lλ∞ , which has to be the code
of an admissible ordinal < λ∞ beginning a gap with an admissible properly inside.
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1
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Il y a en nous une sensation finie de
« l’infini». Et ce n’est qu’un effet – une con-
séquence. Ce n’est pas une preuve de quoi
que ce soit. —Paul Valéry, 1910
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Characterizations of admissibles

For every countable admissible α, ∃r s.t. α = ωCK,r
1TH

M For every countable admissible α, ∃r s.t. α = ωCK,r
1For every countable admissible α, ∃r s.t. α = ωCK,r
1

How can we understand & prove this in an explicit way?How can we understand & prove this in an explicit way?How can we understand & prove this in an explicit way?

The writing time of any α < λ∞ is the sup of all ends of
gaps that start before αTH

M The writing time of any α < λ∞ is the sup of all ends of
gaps that start before α
The writing time of any α < λ∞ is the sup of all ends of
gaps that start before α
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Characterizations of admissibles

For every countable admissible α, ∃r s.t. α = ωCK,r
1TH

M For every countable admissible α, ∃r s.t. α = ωCK,r
1For every countable admissible α, ∃r s.t. α = ωCK,r
1

How can we understand & prove this in an explicit way?How can we understand & prove this in an explicit way?How can we understand & prove this in an explicit way?

simulation of all ITTM’sω-online
ω machines halt for a given simulation time, we choose the first one in the simulation
µ ≺ ν ⇐⇒ (µ and ν are chosen and µ halts before ν)
if we run the above process up to α we get an order for all clockables before α

first run ofω non clockables =⇒ ωCK
1

the order type of clockables below a gap is exactly the starting point of the gap
coding of λ∞

same with oracle (or input)
coding ofωCK,r

1
in some sense these are the simplest codings
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Qui est là ? Ah très bien : faites entrer
l’infini.

—Aragon, Une vague de rêves, 1924

6. building up to a proof



The first steps

Successor admissible caseSuccessor admissible caseSuccessor admissible case

If rβ codes an ordinal β,ωCK,rβ
1 ⩾ β+

LE
M If rβ codes an ordinal β,ωCK,rβ

1 ⩾ β+If rβ codes an ordinal β,ωCK,rβ
1 ⩾ β+

We have to make sure that r does not code more…We have to make sure that r does not code more…We have to make sure that r does not code more…
Find the lowest simplest codeFind the lowest simplest codeFind the lowest simplest code

Recursively inaccessible caseRecursively inaccessible caseRecursively inaccessible case

Limit of theω first admissibles is not admissibleLimit of theω first admissibles is not admissibleLimit of theω first admissibles is not admissible
One can build an ITTM which halts at exactly that limitOne can build an ITTM which halts at exactly that limitOne can build an ITTM which halts at exactly that limit

Consider the first recursively inaccessible ι0Consider the first recursively inaccessible ι0Consider the first recursively inaccessible ι0
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r needs to code the ri’s but in such a way that ∀i, ri can be computed from r but
not uniformly.

r is a mapping fromω2 to {0, 1} that contains ri in the b(i) column.

We ensure that
⊕

i ri 6⩽T r by adding the needed information to hide the ri’s.

r is constructed as
∪

i oi where the oi’s are compatible oracles that represent the
left part of r up to column b(i)

We assume that oi has been built and that we know b(i), and we give the con-
struction for oi+1 and b(i+ 1).
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∆n(Lξ), where λ is a limit ordinal
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Consider κ = ℵα. κ is definable as the greatest cardinal in Lκ+ .
(Here κ+ denotes the least ordinal of cardinality greater than κ.)

And thus α is also definable in Lκ+ .

Löwenheim-Skolem’s theorem, in conjunction with Mostowski’s lemma and the
Condensation Lemma, provides the countable β such that α is definable in Lβ.
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Memorable ordinals: ordinals α for which there exists β such that for any count-
able γ ⩾ β, α is still definable at γ.

Any countable τ such that Lτ ≺ Lω1 is such an upper bound: if α is definable at
β, take δ above τ and β such that Lδ ≺ Lω1 . We then have Lτ ≺ Lδ ≺ Lω1 . α
is thus definable at δ, since δ is above β, and also at τ. τ is therefore above α
and any other definable ordinal. In fact, the least non-memorable ordinal τ0 is the
least ordinal τ with uncountably many elementary extensions Lτ ≺ Lγ.
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The case of codability gaps

Successor admissible caseSuccessor admissible caseSuccessor admissible case
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1 = α

Recursively inaccessible caseRecursively inaccessible caseRecursively inaccessible case

Everything happens in Lγ
where the first code for α appears

Everything happens in Lγ
where the first code for α appears

Everything happens in Lγ
where the first code for α appears
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Est-il possible de raisonner sur des objets qui ne peuvent être définis en un
nombre fini de mots ? Est-il possible même d’en parler en sachant de quoi
l’on parle, et en prononçant autre chose que des paroles vides ? Ou au con-
traire doit-on les regarder comme impensables ? Quant à moi je n’hésite pas
à répondre que ce sont de purs néants.

—Poincaré, La logique de l’infini, 1909

7. sacks’ and jensen’s theorems revisited



How far does it work?
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